Skip to main content
Chemistry LibreTexts

13.5: The Equilibrium Constant in Terms of Pressure

  • Page ID
    49519
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Some equilibria involve physical instead of chemical processes. One example is the equilibrium between liquid and vapor in a closed container. In other sections we stated that the vapor pressure of a liquid was always the same at a given temperature, regardless of how much liquid was present. This can be seen to be a consequence of the equilibrium law if we recognize that the pressure of a gas is related to its concentration through the ideal gas law. Rearranging PV = nRT we obtain

    \[P=\frac{n}{V}RT=cRT\label{1} \]

    since c = amount of substance/volume = n/V. Thus if the vapor pressure is constant at a given temperature, the concentration must be constant also. Equation \(\ref{1}\) also allows us to relate the equilibrium constant to the vapor pressure. In the case of water, for example, the equilibrium reaction and Kc are given by:

    \[\text{H}_2\text{O}(l) \rightleftharpoons \text{H}_2\text{O}(g) \nonumber \] \[\text{K}_c = [\text{H}_2\text{O}(g)] \nonumber \]

    Substituting for the concentration of water vapor from Equation \(\ref{1}\), we obtain

    \[K_{c}=\frac{P_{\text{H}_{\text{2}}\text{O}}}{RT} \nonumber \]

    At 25°C for example, the vapor pressure of water is 17.5 mmHg (2.33 kPa), and so we can calculate

    \[K_{c}=\frac{\text{2}\text{.33 kPa}}{\text{(8}\text{.314 J K}^{-\text{1}}\text{ mol}^{-\text{1}}\text{)(298}\text{.15 K)}} \nonumber \]

    \[=\text{9}\text{.40 }\times \text{ 10}^{-\text{4}}\text{ mol/L} \nonumber \]

    For some purposes it is actually more useful to express the equilibrium law for gases in terms of partial pressures rather than in terms of concentrations. In the general case:

    \[a\text{A}(g) + b\text{B}(g) \rightleftharpoons c\text{C}(g) + d\text{D}(g) \nonumber \]

    The pressure-equilibrium constant Kp is defined by the relationship:

    \[K_{p}=\frac{p_{\text{C}}^{c}p_{\text{D}}^{d}}{p_{\text{A}}^{a}p_{\text{B}}^{b}} \nonumber \]

    where pA is the partial pressure of component A, pB of component B, and so on. Since pA = [A] × RT, pB = [B] × RT, and so on, we can also write as follows:

    \[\begin{align} K_{p} & =\frac{p_{\text{C}}^{c}p_{\text{D}}^{d}}{p_{\text{A}}^{a}p_{\text{B}}^{b}}=\frac{\text{( }\!\![\!\!\text{ C }\!\!]\!\!\text{ }\times \text{ }RT\text{)}^{c}\text{( }\!\![\!\!\text{ D }\!\!]\!\!\text{ }\times \text{ }RT\text{)}^{d}}{\text{( }\!\![\!\!\text{ A }\!\!]\!\!\text{ }\times \text{ }RT\text{)}^{a}\text{( }\!\![\!\!\text{ B }\!\!]\!\!\text{ }\times \text{ }RT\text{)}^{b}} \\ & =\frac{\text{ }\!\![\!\!\text{ C }\!\!]\!\!\text{ }^{c}\text{ }\!\![\!\!\text{ D }\!\!]\!\!\text{ }^{d}}{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }^{a}\text{ }\!\![\!\!\text{ B }\!\!]\!\!\text{ }^{b}}\text{ }\times \text{ }\frac{\text{(}RT\text{)}^{c}\text{(}RT\text{)}^{d}}{\text{(}RT\text{)}^{a}\text{(}RT\text{)}^{b}} \\ & =K_{c}\text{ }\times \text{ (}RT\text{)}^{\text{(}c\text{ + }d\text{ }-\text{ }a\text{ }-\text{ }b\text{ )}} \\ & =K_{c}\text{ }\times \text{ (}RT\text{)}^{\Delta n} \end{align} \nonumber \]

    Again \(Δn\) is the increase in the number of gaseous molecules represented in the equilibrium equation. If the number of gaseous molecules does not change, Δn = 0, Kp = Kc, and both equilibrium constants are dimensionless quantities.

    Example \(\PageIndex{1}\) : SI Units

    In what SI units will the equilibrium constant Kc be measured for the following reactions? Also predict for which reactions Kc = Kp.

    1. \(\text{2NOBr}(g) \rightleftharpoons \text{2NO}(g) + \text{Br}_2(g)\)
    2. \(\text{H}_2\text{O}(g) + \text{C}(s) \rightleftharpoons \text{CO}(g) + \text{H}_2(g)\)
    3. \(\text{N}_2(g) + \text{3H}_2(g) \rightleftharpoons \text{2NH}_3(g)\)
    4. \(\text{H}_2(g) + \text{I}_2(g) \rightleftharpoons \text{2HI}(g)\)

    Solution

    We apply the rule that the units are given by (mol dm–3)Δn.

    1. Since Δn = 1, units are moles per cubic decimeter. 
    2. Since Δn = 1, units are moles per cubic decimeter (the solid is ignored). 
    3. Here Δn = -2 since two gas molecules are produced from four. Accordingly the units are mol–2 dm6
    4. Since Δn = 0, Kc is a pure number. In this case also Kc = Kp