Skip to main content
Chemistry LibreTexts

18.2: Two-State Thermodynamics

  • Page ID
    294352
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Here we describe the basic thermodynamics of two-state systems, which are commonly used for processes such as protein folding, binding, and DNA hybridization. Working with the example of protein folding analyzed through the temperature-dependent folded protein content.

    clipboard_ef3526e05455b090792f8d6f4ac015066.png

    \[K=\dfrac{k_f}{k_u} = \dfrac{[F]}{[U]} = \dfrac{\phi_F}{1-\phi_F} \nonumber \]

    where φF is the fraction of protein that is folded, and the fraction that is unfolded is (1 ‒ φF).

    \[ \begin{aligned} &\phi_F =\dfrac{K}{K+1} \\ &K= e^{-\Delta G^0/RT} \\ &\phi_F = \dfrac{1}{1+e^{-\Delta G^0/RT}} = \dfrac{1}{1+e^{\Delta H^0/RT} e^{-\Delta S^0/R}} \end{aligned} \]

    Define the melting temperature Tm as the temperature at which φF= 0.5. Then at Tm, \(\Delta G^0=0 \mathrm{or} T_m = \Delta H^0/\Delta S^0 \). Characteristic melting curves for Tm= 300 K are below:

    clipboard_e67458d1bd80d966c3db56a94b5df5006.png

    We can analyze the slope of curve at Tm using a van’t Hoff analysis:

    \[ \begin{aligned} \dfrac{d\phi_F}{dT}&=\dfrac{d\phi_F}{dK} \cdot \dfrac{dK}{dT}=\dfrac{d\phi_F}{dK}\cdot K \dfrac{d\ln{K}}{dT}\\ \dfrac{d\ln{K}}{dT} &= \dfrac{\Delta H^0}{RT^2} \\ \dfrac{d\phi_F}{dK} &=K^{-2}(1+K)^{-2} \\ \left( \dfrac{d\phi_F}{dT} \right)_{T=T_m} &= \dfrac{\Delta H^0}{4RT^2_m} \quad \mathrm{since} \; K=1 \; \mathrm{at} \; T_m \end{aligned} \]

    This analysis assumes that there is no temperature dependence to ΔH, although we know well that it does from our earlier discussion of hydrophobicity. A more realistic two-state model will allow for a change in heat capacity between the U and F states that describes the temperature dependence of the enthalpy and entropy.

    \[ \Delta G^0(T) = \Delta H^0(T_m)-T\Delta S^0(T_m)+ \Delta C_p \left[ T-T_m-T \ln{\dfrac{T}{T_m}} \right] \nonumber \]


    This page titled 18.2: Two-State Thermodynamics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?