Introduction – Heavy Metals in Lake Nakuru
- Page ID
- 142079
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)At the end of this assignment students will be able to:
- Understand the rudiments of stabilization of water samples.
- Know the definition of water alkalinity and be able to calculate total alkalinity.
- Distinguish between soluble and particulate bound metals and understand Langmuir adsorption behavior.
Purpose
The purpose of this module is to explore the hypothesis that heavy metal contamination is responsible for the flamingo deaths at
Introduction
You have already read that toxic trace metals are a possible culprit for the deaths of 40,000 lesser flamingos at
The focus of our investigation will be on the metals copper (Cu), zinc (Zn), lead (Pb) and chromium (Cr). Often such metals are referred to as “heavy” or “toxic” metals but, unfortunately, there is not a clear definition of these terms in the scientific literature. (Duffus, 2002) The idea that the density of metals may be correlated to their toxicity is not true, and some metals may be required for life at trace levels but toxic at higher levels. To further confuse matters the oxidation state of the metal can be important in determining both its chemical properties and biological effects. For example, for chromium, Cr(III) is much less harmful than Cr(VI).
Three items must be shown to support the hypothesis that heavy metals are responsible for flamingo deaths:
- Demonstration of the identities of heavy metals present in the lake (qualitative analysis) and determination of the concentration levels (quantitative analysis) of each toxic metal present in the lake.
- What is the potential for exposure of the flamingos to each of these metals?
- Do the toxic trace metals exist in the lake in forms that will be consumed by the flamingos?
- If exposed, is the dose toxic to the flamingos?
The paper by Nelson et al. (1998) reports the results of a thorough study of heavy metals in water samples taken from
Read through the article “Model for Trace Metal Exposure in Filter-Feeding Flamingos at
Q1. What is the likely route of exposure (i.e. eating, drinking, or some other means)?
Q2. Why do you think the authors emphasize the importance of particulate bound metals rather than metal ions dissolved in the water? Is part of the rationale specific to flamingos? If so, why? Are there other reasons?
\[\mathrm{ A_T= [HCO_3^- ] + 2 \times [CO_3^{2-} ] + [SO_4^{2-} ] + 2 \times [PO_4^{3-} ] + [F^- ] + [NH_3] + [OH^- ] - [H^+]}\nonumber\]
You will notice that in the equation for AT some ions are multiplied by a factor of two, and that this factor is not related to their charge. Alkalinity can be measured by titrating a sample with a strong acid until the buffering capacity of the ions is consumed. Normally, environmental water samples are buffered by CO32- and HCO3- so the endpoint of the alkalinity titration is functionally set to pH 4.5. The [CO32-] is multiplied by 2 as two moles of H+ would be required to fully neutralize the carbonate ion. The [SO42-] is multiplied by a factor of 1 because it would not be converted to H2SO4 under the conditions of the titration. Similarly [PO43-] would not be converted only to H2PO4- at pH 4.5 therefore it is multiplied only by a factor of 2.
Q3. Why do you think that [F-] is included in this calculation, while [Cl-] is not?
Q4. Using the data in Table 1 (Nelson, 1998), calculate the alkalinity of the
The Methods section of the Nelson paper suggests that the water samples collected may not have been acidified, although, acidification with 5% nitric acid is often used to stabilize water samples especially those collected for metal ion analysis (EPA-1669, 1996). If samples are to be measured separately for dissolved metals they should be filtered before acidification.
Q5. Why could it be important to filter suspended particles or sediment from the water sample before acidification?
Section 8.4.3 of EPA method 1669 says “Preservation of aliquots for metals other than trivalent and hexavalent chromium—Using a disposable, precleaned, plastic pipet, add 5 mL of a 10% solution of ultrapure nitric acid in reagent water per liter of sample. This will be sufficient to preserve a neutral sample to pH <2.”
Q6. Assume that you collect and filter a 1 liter water sample from
The paper by Nelson et al. examines adsorption to both particulate matter and the algae. The particulate matter was derived from sediment samples collected from
“Adsorption isotherms for metal adsorption to
Q7. Examine the results presented in Figure 1 of the paper by Nelson et al. Why do you think that the experimental results deviate most from the line at low concentrations of the dissolved metal?
Q8. For adsorption to algae (Figure 2 of Nelson et al.) the adsorption behavior is not linear. The authors suggest that the results for Cr, Cu and Zn are consistent with that of a Langmuir isotherm (click here for a tutorial on the Langmuir isotherm).
Summary
The paper by Nelson et al. provides an excellent entry point for our consideration of the possible effect of toxic metals on the flamingos at Lake Nakuru. It should now be clear to you that flamingos are exposed to metals primarily by filtering suspended sediments along with their food supply. The next unit will allow you to develop a plan for the analysis of heavy metals that are adsorbed on the suspended sediment found in Lake Nakuru. Several analytical approaches will be considered: x-ray fluorescence analysis (XRF), atomic spectroscopy (FLAAS, GFAA, and ICP-AES), and anodic stripping voltammetry (ASV).
References
J. H. Duffus Pure Appl. Chem. 74:793–807 (2002).
Y. M. Nelson, R. J. Thampy, G. I. K. Motelin, J. A. Rani, C. J. Disante, L. W. Lion Environ. Toxicol. Chem. 17:2302–230 (1998).
EPA Method 1669 “Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels” (1996) www.hydroqual.com/pdf/B_1669%...20sampling.pdf, accessed June 22, 2011.