6.3: Using R to Model Properties of a Normal Distribution

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Given a mean and a standard deviation, we can use R’s dnorm()function to plot the corresponding normal distribution

dnorm(x, mean, sd)

wheremeanis the value for $$\mu$$,sdis the value for $$\sigma$$, andxis a vector of values that spans the range of x-axis values we want to plot.

# define the mean and the standard deviation

mu = 12 sigma = 2

# create vector for values of x that span a sufficient range of

# standard deviations on either side of the mean; here we use values

# for x that are four standard deviations on either side of the mean

x = seq(4, 20, 0.01)

# use dnorm() to calculate probabilities for each x

y = dnorm(x, mean = mu, sd = sigma)

# plot normal distribution curve

plot(x, y, type = "l", lwd = 2, col = "blue", ylab = "probability", xlab = "x")

To annotate the normal distribution curve to show an area of interest to us, we use R’s polygon() function, as illustrated here for the normal distribution curve in Figure $$\PageIndex{1}$$, showing the area that includes values between 8 and 15.

# define the mean and the standard deviation

mu = 12 sigma = 2

# create vector for values of x that span a sufficient range of

# standard deviations on either side of the mean; here we use values

# for x that are four standard deviations on either side of the mean

x = seq(4, 20, 0.01)

# use dnorm() to calculate probabilities for each x

y = dnorm(x, mean = mu, sd = sigma)

# plot normal distribution curve; the options xaxt = "i" and yaxt = "i"

# force the axes to begin and end at the limits of the data

plot(x, y, type = "l", lwd = 2, col = "ivory4", ylab = "probability", xlab = "x", xaxs = "i", yaxs = "i")

# create vector for values of x between a lower limit of 8 and an upper limit of 15 lowlim = 8

 uplim = 15

dx = seq(lowlim, uplim, 0.01)

# use polygon to fill in area; x and y are vectors of x,y coordinates

# that define the shape that is then filled using the desired color

polygon(x = c(lowlim, dx, uplim), y = c(0, dnorm(dx, mean = 12, sd = 2), 0), border = NA, col = "ivory4")

To find the probability of obtaining a value within the shaded are, we use R’spnorm()command

pnorm(q, mean, sd, lower.tail)

whereqis a limit of interest,meanis the value for $$\mu$$,sdis the value for $$\sigma$$, andlower.tailis a logical value that indicates whether we return the probability for values below the limit (lower.tail = TRUE) or for values above the limit (lower.tail = FALSE). For example, to find the probability of obtaining a result between 8 and 15, given $$\mu = 12$$ and $$\sigma = 2$$, we use the following lines of code.

# find probability of obtaining a result greater than 15

prob_greater15 = pnorm(15, mean = 12, sd = 2, lower.tail = FALSE)

# find probability of obtaining a result less than 8

prob_less8 = pnorm(8, mean = 12, sd = 2, lower.tail = TRUE)

# find probability of obtaining a result between 8 and 15

prob_between = 1 - prob_greater15 - prob_less8 # display results

prob_greater15

[1] 0.0668072

prob_less8

[1] 0.02275013

prob_between

[1] 0.9104427

Thus, 91.04% of values fall between the limits of 8 and 15.

This page titled 6.3: Using R to Model Properties of a Normal Distribution is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.