# 16.7: Critical Values for Grubb's Test

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

The following table provides critical values for $$G(\alpha, n)$$, where $$\alpha$$ is the probability of incorrectly rejecting the suspected outlier and n is the number of samples in the data set. There are several versions of Grubb’s Test, each of which calculates a value for Gij where i is the number of suspected outliers on one end of the data set and j is the number of suspected outliers on the opposite end of the data set. The critical values for G given here are for a single outlier, G10, where

$G_\text{exp} = G_{10} = \frac {|X_{out} - \overline{X}|} {s} \nonumber$

The suspected outlier is rejected if Gexp is greater than $$G(\alpha, n)$$.

 $$\frac {\alpha \ce{->}} {n \ce{ v }}$$ 0.05 0.01 3 1.155 1.155 4 1.481 1.496 5 1.715 1.764 6 1.887 1.973 7 2.02 2.139 8 2.126 2.274 9 2.215 2.387 10 2.29 2.482 11 2.355 2.564 12 2.412 2.636 13 2.462 2.699 14 2.507 2.755 15 2.549 2.755

This page titled 16.7: Critical Values for Grubb's Test is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.