Skip to main content
Chemistry LibreTexts

Solutions

  • Page ID
    11056
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1. Calculate the equilibrium concentrations and pH for a 0.20 M proprionic acid solution. 

     

    Complete the equilibrium and express the equilibrium concentrations in terms of a single unknown 'x'.

      HC3H5O2 (aq) H+(aq) + C3H5O2- (aq)
    initial concentration 0.2 M   0 0
    change - x   + x + x
    equilibrium concentration 0.2 - x   x x

    Write the equilibrium expression (Ka) and express the Ka in terms of the equilibrium concentrations.

      [H+][C3H5O2-]   (x)(x)  
    Ka = _______________ = ___________ = 1.3 x 10-5
      [HC3H5O2]   (0.2 - x) (from table)

    Solve for x; since the initial concentration is greater than 0.1 and the Ka less than 10-4, we can drop the '- x' term.

    x2   solving for 'x' gives  
    _______ = 1.3 x 10-5   x = 1.61 x 10-3
    0.2      

    Solve for the equilibrium concentrations by substituting the value of 'x' into the equilibrium concentrations: [H+] = [C3H5O2-] = x, [HC3H5O2] = 0.2 - x

    [H+] = [C3H5O2-] = 1.61 x 10-3 M, [HC3H5O2] = 1.98 x 10-1 M;

    pH = - log [H+] = - log(1.61 x 10-3)

    pH = 2.79

    2. Calculate the equilibrium concentrations and pH for a 0.20 M carbonic acid solution.
    Compare the answer to problem 1. Note which has the higher Ka and lower pH.
    This is done the same way as problem 1, using a Ka value of 4.2 x 10-7

      H2CO3 (aq) H+(aq) + HCO3- (aq)
    initial concentration 0.2 M   0 0
    change - x   + x + x
    equilibrium concentration 0.2 - x   x x

     

      [H+][HCO3-]   (x)(x)  
    Ka = _______________ = ___________ = 4.2 x 10-7
      [H2CO3]   (0.2 - x) (from table)

     

    x2   solving for 'x' gives  
    _______ = 4.2 x 10-7   x = 2.90 x 10-4
    0.2      

    [H+] = [HCO3-] = 2.90 x 10-4 M, [H2CO3] = 2.0 x 10-1 M; pH = 3.54

    The higher the Ka, the lower the pH for the same concentration of weak acid. The higher Ka value tells us we have more dissociation of the weak acid, giving a greater [H+].

    3. Calculate the Ka for a 0.3 M solution of HA (weak acid) if the pH = 3.65
    First calculate the [H+] concentration from the pH
    [H+] = 10-pH; [H+] = 10-3.65; [H+] = 2.24 x 10-4

    since 1:1 mole ratio

    [H+] = [A-]; [HA] = 0.3 - [H+]

    Substitute into the Ka expression

      [H+][A-]   (2.24 x 10-4)(2.24 x 10-4)
    Ka = ________ = ________________________
      [HA]   (0.3 - 2.24 x 10-4)

    Ka= 1.67 x 10-7

    4. Calculate the pH for a 0.2 M pyridine solution.

      C5H5N (aq) OH-(aq) + C5H5NH+ (aq)
    initial concentration 0.2 M   0 0
    change - x   + x + x
    equilibrium concentration 0.2 - x   x x

     

      [OH-][C5H5NH+]   (x)(x)  
    Kb = ________________ = ___________ = 2.0 x 10-9
     

    [C5H5N]

      (0.2 - x) (from table)

    Solve for 'x'

    x2   solving for 'x' gives  
    _______ = 2.0 x 10-9   x = 2.0 x 10-5
    0.2      

    [OH-] = [C5H5NH+] = 2.0 x 10-5 M, [C5H5N] = 2.0 x 10-1 M

    Using the following equations: pOH = - log [OH-]; pH + pOH = 14

    pOH = 4.70, pH = 9.30

    5. Calculate the pH of a 0.34 M HCl solution.

    pH = 0.47, strong acid, 100 % ionization; 1:1 mole ratio, [HCl] = [H+]


    This page titled Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Draganjac via source content that was edited to the style and standards of the LibreTexts platform.