Skip to main content
Chemistry LibreTexts

Solutions

  • Page ID
    11056
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Calculate the equilibrium concentrations and pH for a 0.20 M proprionic acid solution. 

     

    Complete the equilibrium and express the equilibrium concentrations in terms of a single unknown 'x'.

      HC3H5O2 (aq) H+(aq) + C3H5O2- (aq)
    initial concentration 0.2 M   0 0
    change - x   + x + x
    equilibrium concentration 0.2 - x   x x

    Write the equilibrium expression (Ka) and express the Ka in terms of the equilibrium concentrations.

      [H+][C3H5O2-]   (x)(x)  
    Ka = _______________ = ___________ = 1.3 x 10-5
      [HC3H5O2]   (0.2 - x) (from table)

    Solve for x; since the initial concentration is greater than 0.1 and the Ka less than 10-4, we can drop the '- x' term.

    x2   solving for 'x' gives  
    _______ = 1.3 x 10-5   x = 1.61 x 10-3
    0.2      

    Solve for the equilibrium concentrations by substituting the value of 'x' into the equilibrium concentrations: [H+] = [C3H5O2-] = x, [HC3H5O2] = 0.2 - x

    [H+] = [C3H5O2-] = 1.61 x 10-3 M, [HC3H5O2] = 1.98 x 10-1 M;

    pH = - log [H+] = - log(1.61 x 10-3)

    pH = 2.79

    2. Calculate the equilibrium concentrations and pH for a 0.20 M carbonic acid solution.
    Compare the answer to problem 1. Note which has the higher Ka and lower pH.
    This is done the same way as problem 1, using a Ka value of 4.2 x 10-7

      H2CO3 (aq) H+(aq) + HCO3- (aq)
    initial concentration 0.2 M   0 0
    change - x   + x + x
    equilibrium concentration 0.2 - x   x x

     

      [H+][HCO3-]   (x)(x)  
    Ka = _______________ = ___________ = 4.2 x 10-7
      [H2CO3]   (0.2 - x) (from table)

     

    x2   solving for 'x' gives  
    _______ = 4.2 x 10-7   x = 2.90 x 10-4
    0.2      

    [H+] = [HCO3-] = 2.90 x 10-4 M, [H2CO3] = 2.0 x 10-1 M; pH = 3.54

    The higher the Ka, the lower the pH for the same concentration of weak acid. The higher Ka value tells us we have more dissociation of the weak acid, giving a greater [H+].

    3. Calculate the Ka for a 0.3 M solution of HA (weak acid) if the pH = 3.65
    First calculate the [H+] concentration from the pH
    [H+] = 10-pH; [H+] = 10-3.65; [H+] = 2.24 x 10-4

    since 1:1 mole ratio

    [H+] = [A-]; [HA] = 0.3 - [H+]

    Substitute into the Ka expression

      [H+][A-]   (2.24 x 10-4)(2.24 x 10-4)
    Ka = ________ = ________________________
      [HA]   (0.3 - 2.24 x 10-4)

    Ka= 1.67 x 10-7

    4. Calculate the pH for a 0.2 M pyridine solution.

      C5H5N (aq) OH-(aq) + C5H5NH+ (aq)
    initial concentration 0.2 M   0 0
    change - x   + x + x
    equilibrium concentration 0.2 - x   x x

     

      [OH-][C5H5NH+]   (x)(x)  
    Kb = ________________ = ___________ = 2.0 x 10-9
     

    [C5H5N]

      (0.2 - x) (from table)

    Solve for 'x'

    x2   solving for 'x' gives  
    _______ = 2.0 x 10-9   x = 2.0 x 10-5
    0.2      

    [OH-] = [C5H5NH+] = 2.0 x 10-5 M, [C5H5N] = 2.0 x 10-1 M

    Using the following equations: pOH = - log [OH-]; pH + pOH = 14

    pOH = 4.70, pH = 9.30

    5. Calculate the pH of a 0.34 M HCl solution.

    pH = 0.47, strong acid, 100 % ionization; 1:1 mole ratio, [HCl] = [H+]


    This page titled Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Draganjac via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.