Loading [MathJax]/extensions/TeX/newcommand.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

Physical Constants

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}

( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\id}{\mathrm{id}}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\kernel}{\mathrm{null}\,}

\newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}}

\newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}}

\newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}

\newcommand{\vectorA}[1]{\vec{#1}}      % arrow

\newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow

\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vectorC}[1]{\textbf{#1}} 

\newcommand{\vectorD}[1]{\overrightarrow{#1}} 

\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} 

\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}
Physical Constants Unit
Atomic mass unit (u) 1 u = 1.66053906660 × 10−24 g
1 g = 6.0221407621 × 1023 u
Avogadro’s number (NA) 6.022142 × 1023/mol
Boltzmann’s constant (k) 1.380651 × 10−23 J/K
Charge on electron (e) 1.60217634 × 10−19 C
Faraday’s constant (F) 9.6485338 × 104 C/mol
Gas constant (R) R=k NA

0.0820575 (L atm)/(mol K)

= 8.31447 J/(mol K)

Mass of electron (mn) 5.485799 × 10−4 amu
= 9.109383 × 10−28 g
Mass of neutron (mn) 1.0086649 u
= 1.6749273 × 10−24 g
Mass of proton (mp) 1.0072765 u
= 1.6726217 × 10−24 g
Pi π = 3.1415927
Planck’s constant (h)

h = 6.626069 × 10 34J s

\hbar=\dfrac{h}{2\pi}=1.05457266·10-34 J·s

Speed of light in vacuum (c) c = 2.99792458 × 108 m/s (exact)
Permeability of vacuum \mu_0

\mu_0 = 4\pi ·10-7 T2·m3/J

12.566370614·10-7 T2·m3/J

Permittivity of vacuum \epsilon_0

\epsilon_0 = \dfrac{1}{\mu_o\, c^2}

8.854187817·10-12 C2/J·m

Fine structure constant \alpha \dfrac{1}{137.0359895}
Bohr magneton \mu_B

\mu_B = \dfrac{e h }{4 \pi \,m_e}

9.2740154·10-24 J/T

Nuclear magneton \mu_N

\mu_N = \dfrac{e h }{4 \pi \,m_p}

5.0507866·10-27 J/T

Free electron g factor g_e

2.002319304386

Free electron gyromagnetic ratio \gamma_e

\gamma_e = \dfrac{2 g_e B}{h}

1.7608592·1011 1/s·T

\dfrac{\gamma_e}{2\pi} = 28.024944 GHz/T

Electron magnetic moment \mu_e

\mu_e = \dfrac{- g_e \mu_B}{2}

-9.2847701·10-24 J/T

Proton gyromagnetic ratio (H2O) \gamma_p

2.67515255·108 1/s·T

\dfrac{\gamma_p}{2 \pi} = 42.576375 MHz/T

Proton magnetic moment\mu_p

1.41060761·10-26 J/T

Charge-to-mass ratio for the electron \frac{e}{m_e}

1.75880·1011 C/kg

Bohr radius a_0

5.29177·10-11 m

Electron radius r_e

2.81792·10-15 m

Proton g factor (Landé factor) g_H 5.585
Gravitational constant G

(6.673 ± 0.010)·10-11 m3/kg·s2 (CODATA)

Acceleration due to gravity g

9.80665 m/s2

Compton wavelength of the electron \lambda_c 2.42631·10-12 m
Atomic energy unit Hartree

1 Hartree = \dfrac{e^2}{4 \pi \epsilon_o\, a_0}

1 Hartree = 2.625501·106 J/mol (approx. 627.5 kcal/mol)

Proton Larmor frequency

\nu_p = \gamma_p / 2\pi \, B

\nu_p = 42.5764 MHz/T (H2O)

Electron Larmor frequency

\nu_e = \dfrac{\nu_e}{2\pi} (g / ge) B

\nu_e [GHz] = 13.9962 g B [T]

g = 0.07144775 \nu_e [GHz] / B [T]

g = 3.04199\nu_e [GHz] / \nu_p [MHz]

B [T] = 0.0234872 \nu_p [MHz]

Conversion of Units

1 G = 0.1 mT

1 T = 10 kG

1 mT = 10 G

A [MHz] = 2.80249 (g / ge) A [G]

A [MHz] = 28.0249 (g / ge) A [mT]

A [MHz] = 13.9962 g A [mT]

A [MHz] = 2.99792·104 A [cm-1]

A [cm-1] = 0.333564·10-4 A [MHz]

A [cm-1] = 4.66863·10-4 g A [mT]

 

(Note that the use of brackets [ ] in the following expressions is not in accordance with standards which require the use of a slash, e.g. A/MHz.)

Template:HideTOC

 

Physical Constants is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?