Physical Constants
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}
( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\kernel}{\mathrm{null}\,}
\newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}}
\newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}}
\newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}
\newcommand{\vectorA}[1]{\vec{#1}} % arrow
\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow
\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vectorC}[1]{\textbf{#1}}
\newcommand{\vectorD}[1]{\overrightarrow{#1}}
\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}
\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}Physical Constants | Unit |
---|---|
Atomic mass unit (u) | 1 u = 1.66053906660 × 10−24 g |
1 g = 6.0221407621 × 1023 u | |
Avogadro’s number (NA) | 6.022142 × 1023/mol |
Boltzmann’s constant (k) | 1.380651 × 10−23 J/K |
Charge on electron (e) | 1.60217634 × 10−19 C |
Faraday’s constant (F) | 9.6485338 × 104 C/mol |
Gas constant (R) | R=k NA |
0.0820575 (L atm)/(mol K) = 8.31447 J/(mol K) |
|
Mass of electron (mn) | 5.485799 × 10−4 amu |
= 9.109383 × 10−28 g | |
Mass of neutron (mn) | 1.0086649 u |
= 1.6749273 × 10−24 g | |
Mass of proton (mp) | 1.0072765 u |
= 1.6726217 × 10−24 g | |
Pi | π = 3.1415927 |
Planck’s constant (h) |
h = 6.626069 × 10 −34J s \hbar=\dfrac{h}{2\pi}=1.05457266·10-34 J·s |
Speed of light in vacuum (c) | c = 2.99792458 × 108 m/s (exact) |
Permeability of vacuum \mu_0 |
\mu_0 = 4\pi ·10-7 T2·m3/J 12.566370614·10-7 T2·m3/J |
Permittivity of vacuum \epsilon_0 |
\epsilon_0 = \dfrac{1}{\mu_o\, c^2} 8.854187817·10-12 C2/J·m |
Fine structure constant \alpha | \dfrac{1}{137.0359895} |
Bohr magneton \mu_B |
\mu_B = \dfrac{e h }{4 \pi \,m_e} 9.2740154·10-24 J/T |
Nuclear magneton \mu_N |
\mu_N = \dfrac{e h }{4 \pi \,m_p} 5.0507866·10-27 J/T |
Free electron g factor g_e |
2.002319304386 |
Free electron gyromagnetic ratio \gamma_e |
\gamma_e = \dfrac{2 g_e B}{h} 1.7608592·1011 1/s·T \dfrac{\gamma_e}{2\pi} = 28.024944 GHz/T |
Electron magnetic moment \mu_e |
\mu_e = \dfrac{- g_e \mu_B}{2} -9.2847701·10-24 J/T |
Proton gyromagnetic ratio (H2O) \gamma_p |
2.67515255·108 1/s·T \dfrac{\gamma_p}{2 \pi} = 42.576375 MHz/T |
Proton magnetic moment\mu_p |
1.41060761·10-26 J/T |
Charge-to-mass ratio for the electron \frac{e}{m_e} |
1.75880·1011 C/kg |
Bohr radius a_0 |
5.29177·10-11 m |
Electron radius r_e |
2.81792·10-15 m |
Proton g factor (Landé factor) g_H | 5.585 |
Gravitational constant G |
(6.673 ± 0.010)·10-11 m3/kg·s2 (CODATA) |
Acceleration due to gravity g |
9.80665 m/s2 |
Compton wavelength of the electron \lambda_c | 2.42631·10-12 m |
Atomic energy unit Hartree |
1 Hartree = \dfrac{e^2}{4 \pi \epsilon_o\, a_0} 1 Hartree = 2.625501·106 J/mol (approx. 627.5 kcal/mol) |
Proton Larmor frequency |
\nu_p = \gamma_p / 2\pi \, B \nu_p = 42.5764 MHz/T (H2O) |
Electron Larmor frequency |
\nu_e = \dfrac{\nu_e}{2\pi} (g / ge) B \nu_e [GHz] = 13.9962 g B [T] g = 0.07144775 \nu_e [GHz] / B [T] g = 3.04199\nu_e [GHz] / \nu_p [MHz] B [T] = 0.0234872 \nu_p [MHz] |
Conversion of Units |
1 G = 0.1 mT 1 T = 10 kG 1 mT = 10 G A [MHz] = 2.80249 (g / ge) A [G] A [MHz] = 28.0249 (g / ge) A [mT] A [MHz] = 13.9962 g A [mT] A [MHz] = 2.99792·104 A [cm-1] A [cm-1] = 0.333564·10-4 A [MHz] A [cm-1] = 4.66863·10-4 g A [mT] |
(Note that the use of brackets [ ] in the following expressions is not in accordance with standards which require the use of a slash, e.g. A/MHz.)