Skip to main content
Chemistry LibreTexts

Extra Credit 55

  • Page ID
    49895
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    2.58)

    Which of the atoms will give the greatest CodeCogsEqn.gif at 30°C? a) He b) C c) O? Solve this problem by using the equation for CodeCogsEqn.gif but without calculation.

    Solution:

    crms = vrms = \(\sqrt{\frac{3RT}{M}}\)

    The smaller the molar mass, the greater the CodeCogsEqn (1).gif, so He has the greatest root-mean-square speed (Crms).

    9.2)

    The rate law for the reaction:

    CodeCogsEqn (2).gif

    is given by rate = k [NH4+][NO2-]. At 25ºC, the rate constant is 3.0 x 10-4 M-1s-1. Calculate the concentration of [NH4+] if the rate is 7.23 x 10-6 M s-1 and [NO2-] = 0.03M.

    Solution:

    rate = k [NH4+][NO2-]

    7.23 x 10-6 M s-1 = (3.0 x 10-4 M-1s-1)(0.03M)[NH4+]

    [NH4+] = 0.8033M

    9.26)

    For reaction:

    \[O_3 + O \rightarrow 2O_2\]

    \[Rate= k{\frac{[O_3]^2}{[O_2]}}\]

    Calculate the activation energy at 350K, 500K, and 1000K with the rate constant 3 x 109S-1. Assume A = 1010S-1 in each case.

    Solution:​

    \[k=Ae^{\frac{-E_a}{(R)(T)}}\]

    At 350K:

    \[3·10^9=10^{10}e^{\frac{-E_a}{(8.314)(350K)}}\]

    Ea = 3503 Jmol-1

    At 500K:

    \[3·10^9=10^{10}e^{\frac{-E_a}{(8.314)(500K)}}\]

    Ea = 5004 Jmol-1

    At 1000K:

    \[3·10^9=10^{10}e^{\frac{-E_a}{(8.314)(1000K)}}\]

    Ea = 10009 Jmol-1

    10.1)

    What assumption is made differently in between the rapid equilibrium and the steady state kinetics?

    Solution:

    Rapid equilibrium assumes k-1>>k2, so the enzyme complex is dissociating faster than product. Steady-state kinetics assumes

    k2 >>k1, so the enzyme complex is forming at the same rate as it is turning into product.

    11.16)

    The retina of a human eye can detect light when radiant energy incident on it is at least 4.0 x 10-17J. For light of 320 nm, how many photons does this correspond to?

    Solution:

    \[E={\frac{hc}{\lambda}}\]

    \[E={\frac{(6.626·10^{-34})(3·10^8)}{320·10^9}}\]

    \[E=6.212·10^{-19}J\]

    \[64 photons={\frac{4.0·10^{-17}}{6.21·10^{-19}}}\]

    12.7)

    Consider the following Lewis structure for main-qimg-cf812d66082de596a25fda37ea6ef7fb.gif. Does it satisfy the octet rule? If not, draw additional resonance structures that do satisfy the octet rule.

    Solution:

    It doesn't satisfy the octet rule because it is missing lone pairs of electrons on each oxyge. The following resonance structrues satisgy the octet rule:

    ozone.gif

    13.11)

    Calculate the bond enthalpy of KCl using the Born-Haber cycle. The bond length of KCl is 212pm. The first ionization energy is 418.KJ mol-1 and the electron affinity for Cl is 349 KJ/mol. Use n = 10.

    Solution:

    \[V_o={\frac{q_+q_-}{4\pi\varepsilon_or_e}}(1-{\frac{1}{n}})\]

    \[V_o={\frac{(1.602·10^{-19})^2(6.022·10^{23})}{4\pi(8.854·10^{-12})(212·10^{-12})}}(1-{\frac{1}{10}})\]

    \[V_o=5.897·10^5N·m/mol\]

    \[V_o=589.7KJ/mol\]

    \[-D=I_1-E_A+V_o\]

    \[-D=418.71-349+(-589.7)=-520KL/mol\]

    14.4)

    Convert the following percent transmittance to absorbency: a) 80% b) 35% c) 100%

    Solution:

    \[-log(T)=A\]

    \[A)-log(0.80)=0.097\]

    \[B)-log(0.35)=0.46\]

    \[C)-log(1)=0\]

    9.9)

    The progress of a reaction in the aqueous phase was monitored by absorbance of a reactant at the following times:

    time(s) 0 54 171 390 720 1010 1190
    Absorbance 1.34 1.25 1.07 0.807 0.526 0.360 0.285

    Assuming 1st order kinetics, find the rate constant.

    Solution:

    \[ln{\frac{[A]}{[A_o]}}=-kt\]

    \[ln{\frac{[1.25]}{[1.34]}}=-k(54s)\]

    \[k=0.0013s^{-1}\]

    2.70)

    How does the molecular collisions depend on a) the average speed b) the number of molecules c) the volume d) the separation between the 2 spheres?

    Solution:

    CodeCogsEqn (33).gif

    a) directly proportional

    b) directly proportional

    c)inversely proportional

    d)directly proportional


    Extra Credit 55 is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?