Skip to main content
Chemistry LibreTexts

Extra Credit 18

  • Page ID
    96900
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Q13.4.7

    When heated, iodine vapor dissociates according to this equation:

    \[\ce{I2}(g)⇌\ce{2I}(g)\]

    At 1274 K, a sample exhibits a partial pressure of I2 of 0.1122 atm and a partial pressure due to I atoms of 0.1378 atm. Determine the value of the equilibrium constant, KP, for the decomposition at 1274 K.

    Solution:

    \[K_p=\frac {P_{I_{(g)}}^2} {P_{I_{2_(g)}}}\]

    \[K_p=\frac {0.1378^2} {0.1122}=0.1692\]

    Thus, \(K_p\) of this equation is 0.1692 at 1274K.

    Q14.3.19

    Both HF and HCN ionize in water to a limited extent. Which of the conjugate bases, F or CN, is the stronger base?

    Solution:

    According to E1,

    \(HF + H_2O\rightleftharpoons F^- +H_3O^+\) \(K_{a_{HF}}= 3.5\times 10^{-4} \)

    \(HCN + H_2O\rightleftharpoons CN^- +H_3O^+\) \(K_{a_{HCN}}= 4.9\times 10^{-10} \)

    Apparently, \(K_{a_{HF}}> K_{a_{HCN}}\), which means HF is stronger than HCN.

    Since a stronger acid produces a weaker conjugate base,

    Thus, \(CN^-\) is a stronger base.

    Q15.1.X

    Calculate the molar solubility of AgBr in 0.035 M NaBr (Ksp = 5 × 10–13).

    Solution:

    \[K_{sp}=[Ag^+][Cl^-]\]

    \[AgCl_{(s)} \leftrightharpoons Ag^+ _{(aq)} +Cl^- _{(aq)}\]

    ICE Table \[AgCl_{(s)}\] \[Ag^+_{(aq)}\] \[Cl^-_{(aq)}\]
    Initial / 0 0.035
    Change / x x
    Equilibrium / x 0.035+x

    \[K_{sp}=[Ag^+][Cl^-] = x\times (0.035+x) = 5 \times 10^{-13}\]

    Let's assume that 0.035+x is approximately equal to 0.035, since \(K_{sp}\) is very small

    \[K_{sp}= x\times 0.035=5 \times 10^{-13}\]

    \(x= 1.75\times 10^{-14}\ll 0.035\) the assumption is valid

    Thus, the molar solubility of AgBr in 0.035 M NaBr is \(1.75\times 10^{-14} M\).

    (Using Wolfram

    \[x=1.42857\times 10^{-11}\]

    Thus, the molar solubility of AgBr in 0.035 M NaBr is \(1.42857\times 10^{-11} M\).)

    Q16.4.16

    Given that the \(ΔG^\circ_\ce{f}\) for Pb2+(aq) and Cl(aq) is −24.3 kJ/mole and −131.2 kJ/mole respectively, determine the solubility product, Ksp, for PbCl2(s).

    Solution:

    \[PbCl_{(s)}=Pb^{2+}_{(aq)} + Cl^-_{aq}\]

    \[\Delta G^\circ_{rxn}=\Delta G^\circ_{Pb^{2+}_{(aq)}} + \Delta G^\circ_{Cl^{-}_{(aq)}} -\Delta G^\circ_{PbCl_{(s)}}\]

    According to T1 and information from the question,

    we could find \[\Delta G^\circ_{rxn}= (-24.3) + (-131.2) - (-359.4)= 203.9 KJ/mol =203900 J/mol\]

    Since the reaction reaches equilibrium when PbCl dissolve in the water, we could assume that \(\Delta G^\circ_{rxn}=0\)

    \[\Delta G^\circ =-RTlnK_{sp}\]

    Thus, \[K_{sp}=1.81\times10^{-36}\]

    Q5.4.32

    Calculate the enthalpy of combustion of propane, C3H8(g), for the formation of H2O(g) and CO2(g). The enthalpy of formation of propane is −104 kJ/mol.

    Solution:

    \[C_3H_8 + 5O_2\rightarrow 4H_2O + 3CO_2\]

    \[\Delta H_{rxn} =4\Delta H_{f_{(H_2O)}} +3\Delta H_{f_{(CO_2)}}-\Delta H_{f_{(C_3H_8)}} - 5\Delta H_{f_{(O_2)}}\]

    According to T1 and the information given in the question,

    we could find

    \[\Delta H_{rxn}=4\times(-285.8) + 3\times(-393.5) - (-104) - 5\times(0) = -2219.7 KJ/mol\]

    Thus, the enthalpy of combustion of propane is -2219.7 KJ/mol.


    Extra Credit 18 is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?