Skip to main content
Chemistry LibreTexts

7.4: The Gibbs-Duhem Equation

  • Page ID
    84333
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    For a system at equilibrium, the Gibbs-Duhem equation must hold:

    \[\sum_i n_i d\mu_i = 0 \label{eq1} \]

    This relationship places a compositional constraint upon any changes in the chemical potential in a mixture at constant temperature and pressure for a given composition. This result is easily derived when one considers that \(\mu_i\) represents the partial molar Gibbs function for component \(i\). And as with other partial molar quantities,

    \[ G_{tot} = \sum_i n_i \mu_i \nonumber \]

    Taking the derivative of both sides yields

    \[ dG_{tot} = \sum_i n_i d \mu_i + \sum_i \mu_i d n_i \nonumber \]

    But \(dG\) can also be expressed as

    \[dG = Vdp - sdT + \sum_i \mu_i d n_i \nonumber \]

    Setting these two expressions equal to one another

    \[ \sum_i n_i d \mu_i + \cancel{ \sum_i \mu_i d n_i } = Vdp - sdT + \cancel{ \sum_i \mu_i d n_i} \nonumber \]

    And after canceling terms, one gets

    \[ \sum_i n_i d \mu_i = Vdp - sdT \label{eq41} \]

    For a system at constant temperature and pressure

    \[Vdp - sdT = 0 \label{eq42} \]

    Substituting Equation \ref{eq42} into \ref{eq41} results in the Gibbs-Duhem equation (Equation \ref{eq1}). This expression relates how the chemical potential can change for a given composition while the system maintains equilibrium. So for a binary system, consisting of components \(A\) and \(B\) (the two most often studied compounds in all of chemistry)

    \[ d\mu_B = -\dfrac{n_A}{n_B} d\mu_A \nonumber \]


    This page titled 7.4: The Gibbs-Duhem Equation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.

    • Was this article helpful?