# 7.4: The Gibbs-Duhem Equation

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

For a system at equilibrium, the Gibbs-Duhem equation must hold:

$\sum_i n_i d\mu_i = 0 \label{eq1}$

This relationship places a compositional constraint upon any changes in the chemical potential in a mixture at constant temperature and pressure for a given composition. This result is easily derived when one considers that $$\mu_i$$ represents the partial molar Gibbs function for component $$i$$. And as with other partial molar quantities,

$G_{tot} = \sum_i n_i \mu_i \nonumber$

Taking the derivative of both sides yields

$dG_{tot} = \sum_i n_i d \mu_i + \sum_i \mu_i d n_i \nonumber$

But $$dG$$ can also be expressed as

$dG = Vdp - sdT + \sum_i \mu_i d n_i \nonumber$

Setting these two expressions equal to one another

$\sum_i n_i d \mu_i + \cancel{ \sum_i \mu_i d n_i } = Vdp - sdT + \cancel{ \sum_i \mu_i d n_i} \nonumber$

And after canceling terms, one gets

$\sum_i n_i d \mu_i = Vdp - sdT \label{eq41}$

For a system at constant temperature and pressure

$Vdp - sdT = 0 \label{eq42}$

Substituting Equation \ref{eq42} into \ref{eq41} results in the Gibbs-Duhem equation (Equation \ref{eq1}). This expression relates how the chemical potential can change for a given composition while the system maintains equilibrium. So for a binary system, consisting of components $$A$$ and $$B$$ (the two most often studied compounds in all of chemistry)

$d\mu_B = -\dfrac{n_A}{n_B} d\mu_A \nonumber$

This page titled 7.4: The Gibbs-Duhem Equation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.