Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • Number of Print Columns
    • PrintOptions
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
  • Include attachments
Searching in
About 44 results
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Chemical_Group_Theory_(Miller)/01%3A_Translational_Symmetry/1.03%3A_Periodic_Boundary_Conditions
    Now, the electron density ρ(r) of a crystal has the full periodicity of the lattice, ρ(r+Tn1n2)=ρ(r) for all integers n 1 a...Now, the electron density ρ(r) of a crystal has the full periodicity of the lattice, ρ(r+Tn1n2)=ρ(r) for all integers n 1 and n 2 . On the other hand, the electronic wavefunctions (crystal orbitals) do not, but they must obey the periodic boundary conditions, i.e.,
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Chemical_Group_Theory_(Miller)/00%3A_Introduction
    Group theory provides the mathematical framework for applying the symmetry of a chemical structure to characterize its various physical states and properties. Therefore, this section of the course is ...Group theory provides the mathematical framework for applying the symmetry of a chemical structure to characterize its various physical states and properties. Therefore, this section of the course is divided into two subsections:
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Chemical_Group_Theory_(Miller)/00%3A_Front_Matter
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Chemical_Group_Theory_(Miller)/05%3A_Blochs_Theorem/5.01%3A_Introduction_to_Blochs_Theorem
    \[\left( 1 \middle| \boldsymbol{T} \right)\psi_{n\boldsymbol{k}}\left( \boldsymbol{r} \right) = \psi_{n\boldsymbol{k}}\left( \left( 1 \middle| \boldsymbol{T} \right)^{- 1}\boldsymbol{r} \right) = \psi...(1|T)ψnk(r)=ψnk((1|T)1r)=ψnk((1|T)r)=ψnk(rT)
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Chemical_Group_Theory_(Miller)/05%3A_Blochs_Theorem/5.05%3A_Vibrational_States_and_Phonon_Dispersion_Curves
    Vn(ma)=12Kvib[(un(ma)un((m+1)a))2+(un(ma)un((m1)a))2] In the...Vn(ma)=12Kvib[(un(ma)un((m+1)a))2+(un(ma)un((m1)a))2] In the figures illustrating each phonon mode, the arrows signify the direction and “size” of the atomic displacements, which are, in fact, oscillations about the equilibrium positions of the atoms.
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Chemical_Group_Theory_(Miller)/05%3A_Blochs_Theorem/5.02%3A_The_First_Brillouin_Zone
    Nevertheless, since ψn(k)(r) and ψnk(r) are basis functions for the same IR \(\Gamma^{( - \bold...Nevertheless, since ψn(k)(r) and ψnk(r) are basis functions for the same IR Γ(k), ψn(k)(r) and ψnk(r) are degenerate eigenfunctions of the Hermitian Hamiltonian operator, so that En(k)=En(k).
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Chemical_Group_Theory_(Miller)/05%3A_Blochs_Theorem
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Chemical_Group_Theory_(Miller)/00%3A_Front_Matter/01%3A_TitlePage
    Chemical Group Theory Modules
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Chemical_Group_Theory_(Miller)/03%3A_Space_Groups/3.03%3A_Glide_Reflections
    \(\left( R \middle| \boldsymbol{\tau} \right) = \left( 1 \middle| \frac{\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}}{4} \right)\left( {\overline{4}}_{\boldsymbol{c}} \middle| \boldsymbol{0} \righ...\(\left( R \middle| \boldsymbol{\tau} \right) = \left( 1 \middle| \frac{\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}}{4} \right)\left( {\overline{4}}_{\boldsymbol{c}} \middle| \boldsymbol{0} \right)\left( 1 \middle| \frac{- \boldsymbol{a} - \boldsymbol{b} - \boldsymbol{c}}{4} \right) = \left( 1 \middle| \frac{\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}}{4} \right)\left( {\overline{4}}_{\boldsymbol{c}} \middle| \frac{\boldsymbol{b} - \boldsymbol{a} + \boldsymbol{c}}{4} \right) = \left( …
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Chemical_Group_Theory_(Miller)/03%3A_Space_Groups/3.07%3A_Volume_A_of_the_International_Tables_of_Crystallography
    \(\left( \left( m_{010} \middle| \alpha_{2}\ 0\ \gamma_{2} \right)\left( 2_{010} \middle| 0\ \beta_{1}\ 0 \right) \right)^{2} = \left( \overline{1} \middle| \alpha_{2}\ \left( - \beta_{1} \right)\ \ga...((m010|α2 0 γ2)(2010|0 β1 0))2=(¯1|α2 (β1) γ2)2=(1|0 0 0): no other constraints.
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Chemical_Group_Theory_(Miller)/03%3A_Space_Groups
    Space groups identify the possible ways to describe the rotational and translational symmetry of crystalline structures in real space. As we have seen, these aspects of 3-d crystalline symmetry are se...Space groups identify the possible ways to describe the rotational and translational symmetry of crystalline structures in real space. As we have seen, these aspects of 3-d crystalline symmetry are separately described by 32 crystallographic point groups and 14 Bravais lattices. For any space group, these two types of symmetry must be compatible with each other.

Support Center

How can we help?