Skip to main content
Chemistry LibreTexts

2.3: Rotations in spin space

  • Page ID
    20879
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Given two types of angular momentum, orbital and spin, it is possible to define a total angular momantum

    \begin{displaymath}
{\bf J}= {\bf L}+ {\bf S}
\end{displaymath}

    \({\bf J}\) plays a special role in quantum mechanics. Not only is it often a constant of the motion even when \(H\) is spin-dependent, but it is the generator of rotations in the Hilbert space.

    To see what this means, consider a simpler situation with the total linear momentum \(P\). The linear momentum is known as the generator of translations in the Hilbert space. By this, we mean that the operator

    \begin{displaymath}
T_{{\bf a}} = e^{-i{\bf P}\cdot{\bf a}/\hbar}
\end{displaymath}

    which is a function of \(P\) produces translations in space by an amount \({\bf a}\). Thus, its action on an arbitrary function of \({\bf r}\) is

    \begin{displaymath}
T_{{\bf a}}\psi({\bf r}) = \psi({\bf r}-{\bf a})
\end{displaymath}

    To see that this is true, consider the one-dimensional version of this operator

    \begin{displaymath}
T_a = e^{-iPa/\hbar}
\end{displaymath}

    Using the fact that \(P=(\hbar/i)(d/dx)\), the action of \(T_a\) on an arbitrary function \(\psi(x)\) is

    \begin{displaymath}
T_a \psi(x) = e^{-ad/dx}\psi(x)
\end{displaymath}

    This can be evaluated by a Taylor series:

    \(\displaystyle e^{-ad/dx}\psi(x)\) \(\textstyle =\) $\displaystyle \left[1-a{d \over dx} + {1 \over 2!}a^2{d^2 \over dx^2}
- {1 \over 3!}a^3{d^3 \over dx^3} + \cdots\right]\psi(x)$
    \(\textstyle =\) \(\displaystyle \psi(x)-a\psi'(x) + {1 \over 2!}a^2 \psi''(x) - \cdots\)
    \(\textstyle =\) \(\displaystyle \psi(x-a)\)

    That is, the next to last line is just the Taylor expansion of \(\psi(x-a)\) about \(a=0\). \({\bf P}\) is, therefore, called the generator of the translation group.

    By analogy and by similar reasoning, it can be shown that \({\bf J}\) is the generator of rotations of vectors in the Hilbert space via the operator:

    \begin{displaymath}
{R_{\alpha}({\bf n})}= \exp\left[-{i \over \hbar}\alpha{\bf J}\cdot{\hat{\bf n}}\right]
\end{displaymath}

    which produces rotations of a vector by an angle \(\alpha\) about an axis defined by the unit vector \({\hat{\bf n}}\). \({\bf J}\) is called the generator of the rotation group.

    Since \({\bf L}\) and \({\bf S}\) commute (they act in different Hilbert spaces), the rotation operator can be written as

    \(\displaystyle {R_{\alpha}({\bf n})}\) \(\textstyle =\) \(\displaystyle \exp\left[-{i \over \hbar}\alpha({\bf L}+{\bf S})\cdot{\hat{\bf n}}\right]\)
    \(\textstyle =\) $\displaystyle \exp\left[-{i \over \hbar}\alpha{\bf L}\cdot{\hat{\bf n}}\right]
\exp\left[-{i \over \hbar}\alpha{\bf S}\cdot{\hat{\bf n}}\right]$
    \(\textstyle =\) \(\displaystyle {R_{\alpha}^{(r)}({\bf n})}{R_{\alpha}^{(s)}({\bf n})}\)

    Thus, a particle whose state vector is separable into spatial and spin components according to

    \begin{displaymath}
\vert\psi\rangle = \vert\phi\rangle \bigotimes \vert\chi\rangle
\end{displaymath}

    will be transformed according to

    \(\displaystyle \vert\psi'\rangle\) \(\textstyle =\) $\displaystyle {R_{\alpha}({\bf n})}\vert\psi\rangle =
\left[\exp\left(-{i \over...
...-{i \over \hbar}\alpha{\bf S}\cdot{\hat{\bf n}}\right) \vert\chi\rangle \right]$
    \(\textstyle =\) \(\displaystyle \vert\phi'\rangle \bigotimes \vert\chi'\rangle\)

    Let us focus on the spin part of this equation, which transform \(\vert\chi\rangle\longrightarrow \vert\chi'\rangle\) by

    \begin{displaymath}
\vert\chi'\rangle = \exp\left(-{i \over \hbar}\alpha{\bf S}\cdot{\hat{\bf n}}\right) \vert\chi\rangle
\end{displaymath}

    Since \({\bf S}= (\hbar/2)\stackrel{\rightarrow}{\sigma}\), where \(\stackrel{\rightarrow}{\sigma}\) is the vector of Pauli matrices, the spin rotation operator becomes

    \begin{displaymath}
{R_{\alpha}^{(s)}({\bf n})}= \exp\left[-i{\alpha \over 2}\stackrel{\rightarrow}{\sigma}\cdot{\hat{\bf n}}\right]
\end{displaymath}

    Thus, the generators of the spin-1/2 rotation group are just the 2\(\times\) 2 Pauli matrices.


    This page titled 2.3: Rotations in spin space is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark E. Tuckerman.

    • Was this article helpful?