2.3: Rotations in spin space
- Page ID
- 20879
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Given two types of angular momentum, orbital and spin, it is possible to define a total angular momantum

\({\bf J}\) plays a special role in quantum mechanics. Not only is it often a constant of the motion even when \(H\) is spin-dependent, but it is the generator of rotations in the Hilbert space.
To see what this means, consider a simpler situation with the total linear momentum \(P\). The linear momentum is known as the generator of translations in the Hilbert space. By this, we mean that the operator

which is a function of \(P\) produces translations in space by an amount \({\bf a}\). Thus, its action on an arbitrary function of \({\bf r}\) is

To see that this is true, consider the one-dimensional version of this operator

Using the fact that \(P=(\hbar/i)(d/dx)\), the action of \(T_a\) on an arbitrary function \(\psi(x)\) is

This can be evaluated by a Taylor series:
\(\displaystyle e^{-ad/dx}\psi(x)\) | \(\textstyle =\) | ![]() | |
\(\textstyle =\) | \(\displaystyle \psi(x)-a\psi'(x) + {1 \over 2!}a^2 \psi''(x) - \cdots\) | ||
\(\textstyle =\) | \(\displaystyle \psi(x-a)\) |
That is, the next to last line is just the Taylor expansion of \(\psi(x-a)\) about \(a=0\). \({\bf P}\) is, therefore, called the generator of the translation group.
By analogy and by similar reasoning, it can be shown that \({\bf J}\) is the generator of rotations of vectors in the Hilbert space via the operator:
![\begin{displaymath}
{R_{\alpha}({\bf n})}= \exp\left[-{i \over \hbar}\alpha{\bf J}\cdot{\hat{\bf n}}\right]
\end{displaymath}](http://www.nyu.edu/classes/tuckerman/quant.mech/lectures/lecture_6/img64.png)
which produces rotations of a vector by an angle \(\alpha\) about an axis defined by the unit vector \({\hat{\bf n}}\). \({\bf J}\) is called the generator of the rotation group.
Since \({\bf L}\) and \({\bf S}\) commute (they act in different Hilbert spaces), the rotation operator can be written as
\(\displaystyle {R_{\alpha}({\bf n})}\) | \(\textstyle =\) | \(\displaystyle \exp\left[-{i \over \hbar}\alpha({\bf L}+{\bf S})\cdot{\hat{\bf n}}\right]\) | |
\(\textstyle =\) | ![]() | ||
\(\textstyle =\) | \(\displaystyle {R_{\alpha}^{(r)}({\bf n})}{R_{\alpha}^{(s)}({\bf n})}\) |
Thus, a particle whose state vector is separable into spatial and spin components according to

will be transformed according to
\(\displaystyle \vert\psi'\rangle\) | \(\textstyle =\) | ![]() | |
\(\textstyle =\) | \(\displaystyle \vert\phi'\rangle \bigotimes \vert\chi'\rangle\) |
Let us focus on the spin part of this equation, which transform \(\vert\chi\rangle\longrightarrow \vert\chi'\rangle\) by

Since \({\bf S}= (\hbar/2)\stackrel{\rightarrow}{\sigma}\), where \(\stackrel{\rightarrow}{\sigma}\) is the vector of Pauli matrices, the spin rotation operator becomes
![\begin{displaymath}
{R_{\alpha}^{(s)}({\bf n})}= \exp\left[-i{\alpha \over 2}\stackrel{\rightarrow}{\sigma}\cdot{\hat{\bf n}}\right]
\end{displaymath}](http://www.nyu.edu/classes/tuckerman/quant.mech/lectures/lecture_6/img81.png)
Thus, the generators of the spin-1/2 rotation group are just the 2\(\times\) 2 Pauli matrices.