Skip to main content
Chemistry LibreTexts

2.1: Representing states in the full Hilbert space

  • Page ID
    20878
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Given a representation of the states that span the spin Hilbert space, we now need to consider the problem of representing the the states the span the full Hilbert space:

    \begin{displaymath}
{\cal H} = {\cal H}_r \bigotimes {\cal H}_s
\end{displaymath}

    We will work with the following complete set of commuting observables (CSCO): \(\{X,Y,Z,S^2,S_z\}\), which means that the basis vectors which span the full Hilbert space must be simultaneous eigenvectors of these five operators. These will be represented as

    \begin{displaymath}
\vert{\bf r}\;s\;m_s\rangle = \vert{\bf r}\rangle\bigotimes \vert s\;m_s\rangle
\end{displaymath}

    that is, they will be a tensor product of the usual coordinate eigenvector and the simultaneous eigenvector of \(S^2\) and \(S_z\). Thus, they will satisfy the eigenvalue equations:

    \(\displaystyle X\vert{\bf r}\;\;s\;m_s\rangle\) \(\textstyle =\) \(\displaystyle x \vert{\bf r}\;\;s\;m_s\rangle\)
    \(\displaystyle Y\vert{\bf r}\;\;s\;m_s\rangle\) \(\textstyle =\) \(\displaystyle y \vert{\bf r}\;\;s\;m_s\rangle\)
    \(\displaystyle Z\vert{\bf r}\;\;s\;m_s\rangle\) \(\textstyle =\) \(\displaystyle z \vert{\bf r}\;\;s\;m_s\rangle\)
    \(\displaystyle S^2\vert{\bf r}\;\;s\;m_s\rangle\) \(\textstyle =\) \(\displaystyle s(s+1)\hbar^2 \vert{\bf r}\;\;s\;m_s\rangle\)
    \(\displaystyle S_z\vert{\bf r}\;\;s\;m_s\rangle\) \(\textstyle =\) \(\displaystyle m_s\hbar \vert{\bf r}\;\;s\;m_s\rangle\)

    The basis vectors will also satisfy an orthogonality relation:

    \begin{displaymath}
\rangle {\bf r}\;\;s\;m_s\vert{\bf r}'\;s\;m_s'\rangle = \delta_{m_s m_s'}\delta^{(3)}
({\bf r}-{\bf r}')
\end{displaymath}

    Any arbitrary vector \(\vert\phi\rangle\) in the Hilbert space can be expanded in terms of these basis vectors:

    \begin{displaymath}
\vert\phi\rangle = \sum_{m_s=-s}^s \int\;d{\bf r}\;\;
\vert{\bf r}\;\;s\;m_s\rangle\langle{\bf r}\;\;s\;m_s\vert\phi\rangle
\end{displaymath}

    The expansion coefficients can, as usual, be designated as functions of \({\bf r}\):

    \begin{displaymath}
\langle {\bf r}\;\;s\;m_s\vert\phi\rangle = \phi_{s,m_s}({\bf r})
\end{displaymath}

    For the case of spin-1/2, the expansion takes the form

    \(\displaystyle \vert\phi\rangle\) \(\textstyle =\) $\displaystyle \sum_{m_s=-1/2}^{1/2}
\int\;d{\bf r}\;\;\left\vert{\bf r}\;\;{1 \over 2}\;m_s\right>
\left<{\bf r}\;\;{1 \over 2}\;m_s\right\vert\phi\rangle$
    \(\textstyle =\) $\displaystyle \int\;d{\bf r}\;\;\left(
\left\vert{\bf r}\;\;{1 \over 2}\;-{1 \o...
...}\right>
\left<{\bf r}\;\;{1 \over 2}\;{1 \over 2}\right\vert\phi\rangle\right)$

    The coefficients are designated by

    $\displaystyle \left<{\bf r}\;\;{1 \over 2}\;{1 \over 2}\right\vert\phi\rangle =...
...\phi_{{1 \over 2}}({\bf r})\;\;\;\;\;{\rm or}\;\;\;\;\;\phi_{\uparrow}({\bf r})$
    $\displaystyle \left<{\bf r}\;\;{1 \over 2}\;-{1 \over 2}\right\vert\phi\rangle ...
...i_{-{1 \over 2}}({\bf r})\;\;\;\;\;{\rm or}\;\;\;\;\;\phi_{\downarrow}({\bf r})$

    Then, since the basis vectors are:

    \(\displaystyle \left\vert{\bf r}\;\;{1 \over 2}\;{1 \over 2}\right>\) \(\textstyle =\) $\displaystyle \vert{\bf r}\rangle \bigotimes\;\left\vert{1 \over 2}\;{1 \over 2}\right> =
\vert{\bf r}\rangle \bigotimes {\left(\matrix{1 \cr 0}\right)}$
    \(\displaystyle \left\vert{\bf r}\;\;{1 \over 2}\;-{1 \over 2}\right>\) \(\textstyle =\) $\displaystyle \vert{\bf r}\rangle \bigotimes\;\left\vert{1 \over 2}\;-{1 \over 2}\right> =
\vert{\bf r}\rangle \bigotimes {\left(\matrix{0 \cr 1}\right)}$

    the expansion can be written as

    \(\displaystyle \vert\phi\rangle\) \(\textstyle =\) $\displaystyle \int\;d{\bf r}\;
\left(\vert{\bf r}\rangle \bigotimes {\left(\mat...
...le \bigotimes {\left(\matrix{1 \cr 0}\right)}\phi_{{1 \over 2}}({\bf r})\right)$
    \(\textstyle =\) $\displaystyle \int\;d{\bf r}\;\vert{\bf r}\rangle \bigotimes
\left[{\left(\matr...
...}}({\bf r}) + {\left(\matrix{1 \cr 0}\right)}\phi_{{1 \over 2}}({\bf r})\right]$
    \(\textstyle =\) $\displaystyle \int\;d{\bf r}\;\vert{\bf r}\rangle \bigotimes
\left(\matrix{\phi_{{1 \over 2}}({\bf r}) \cr \phi_{-{1 \over 2}}({\bf r})}\right)$

    The vector

    \begin{displaymath}
\left(\matrix{\phi_{{1 \over 2}}({\bf r}) \cr \phi_{-{1 \over 2}}({\bf r})}\right)
\end{displaymath}

    is called a two-component spinor. Note that

    \(\displaystyle \langle \phi\vert\phi\rangle\) \(\textstyle =\) $\displaystyle \int\;d{\bf r}\;\int\;d{\bf r}'\;
\left(\matrix{\phi_{{1 \over 2}}^*({\bf r}')$
    \(\textstyle =\) $\displaystyle \int\;d{\bf r}\;\int\;d{\bf r}'\;
\left[\phi_{{1 \over 2}}({\bf r...
...r 2}}({\bf r})\phi_{-{1 \over 2}}({\bf r})\right]\delta^{(3)}({\bf r}-{\bf r}')$
    \(\textstyle =\) $\displaystyle \int\;d{\bf r}\;\left(\vert\phi_{{1 \over 2}}({\bf r})\vert^2 +
\vert\phi_{-{1 \over 2}}({\bf r})\vert^2\right)$

    Example: If we have a spin-independent Hamiltonian that is also spherically symmetric, then the quantum numbers that characterize the states will be \(n,l,m,s,m_s\). Thus, for the hydrogen atom,

    \begin{displaymath}
H = \left[-{\hbar^2 \over 2\mu}{1 \over r}{\partial^2 \over ...
...l r^2}r +
{l(l+1)\hbar^2 \over 2\mu r^2}-{e^2 \over r}\right]
\end{displaymath}

    which is spin independent. The ground state will, therefore, be twofold degenerate with the two eigenfunctions being:

    \(\displaystyle \psi_{100{1 \over 2}\;{1 \over 2}}(r,\theta,\varphi)\) \(\textstyle =\) \(\displaystyle \left({1 \over \pi a_0^3}\right)^{1/2}e^{-r/a_0}{\left(\matrix{1 \cr 0}\right)}\)
    \(\displaystyle \psi_{100{1 \over 2}\;-{1 \over 2}}(r,\theta,\varphi)\) \(\textstyle =\) \(\displaystyle \left({1 \over \pi a_0^3}\right)^{1/2}e^{-r/a_0}{\left(\matrix{0 \cr 1}\right)}\)

    This page titled 2.1: Representing states in the full Hilbert space is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark E. Tuckerman.

    • Was this article helpful?