Skip to main content
Chemistry LibreTexts

15.S: Chemical Equilibrium (Summary)

  • Page ID
    91278
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    chemical equilibrium – condition where the concentration of products and reactants do not change with time

    15.1: The Concept of Equilibrium

    • at equilibrium kf[A] = kr[B]

    15.2: The Equilibrium Constant

    • equilibrium condition can be reached from either forward or reverse direction
    • Cato Maximillian Galdberg (1836-1902), and Peter Wauge (1833-1900)
      • Law of mass action – relationship between concentrations of reactions and products at equilibrium
      • If :
      • (equilibrium expression)
      • equilibrium expression depends only on stoichiometry of reaction and not mechanisms
      • equilibrium constant:
      • does not depend on initial concentrations
      • does not matter if other substances present as long as they do not react with reactants or products
      • varies with temperatures
      • no units

    15.2.1 Expressing Equilibrium Constants in Terms of Pressure, kp

    15.2.2 The Magnitude of Equilibrium Constants

      • k>>1; equilibrium lies to the right; products favored
      • k<<1; equilibrium lies to the left; reactants favored

    15.2.3 The Direction of the Chemical Equation and K

    • equilibrium expression written in one direction is the reciprocal of the one in the other direction

    15.4: Heterogeneous Equilibria

    • homogeneous equilibria – substances in the same phase
    • heterogeneous equilibria – substances in different phases
    • concentration of pure liquid or solid
    • density of pure liquid or solid is constant at any temperature
    • if pure solid or liquid is involved in a reaction, its concentration is excluded from equilibrium expression
    • pure solids must be present for equilibrium to be reached even through they are excluded from equilibrium expression

    15.5: Calculating Equilibrium Constants

    • determining unknown equilibrium concentrations
      • 1) tabulate known initial and equilibrium concentrations

    - 2) calculate change in concentration that occurs as system reaches equilibrium

      • 3) use stoichiometry to determine change in concentration of unknown species
      • 4) from initial concentrations and changes in concentrations, calculate equilibrium concentrations

    15.4.1 Relating kc and kp

      • PV = nRT; P = (n/V)RT = MRT
      • PA = [A](RT)
      • Kp=kc(RT)D n
      • D n = change in moles from reactants to products

    15.6: Applications of Equilibrium Constants

    • equilibrium constant:
      • 1) product direction reaction mixture will proceed
      • 2) calculate concentrations of reactants and products once equilibrium is reached

    15.5.1 Predicting the Direction of Reaction

      • reaction quotient
      • at equilibrium Q=k
      • Q>k; reaction moves right to left
      • Q<k; reaction moves left to right

    15.5.2 Calculating of Equilibrium Concentrations

    15.7: Le Chatelier's Principle

    • if system at equilibrium is disturbed by change in temperature, pressure or concentration then system will shift equilibrium position

    15.6.1 Change in Reactant or Product Concentration

      • addition of substance will result in consummation of part of added substance
      • if substance removed, reaction will move to produce more of the substance

    15.6.2 Effects of Volume and Pressure Changes

      • reducing volume, reaction shifts to reduce number of gas molecules
      • increase volume, reaction shifts to produce more gas molecules
      • increase pressure, decrease volume reduces total number of moles
      • pressure volume changes do not affect k as long as temperature is constant
      • changes concentrations of gaseous substances

    15.6.3 Effect on Temperature Change

      • endothermic: reactants + heat « products
      • exothermic: reactants « products + heat
      • increase temperature, equilibrium shifts in direction that absorbs heat
      • endothermic: increase T, increase k
      • exothermic: increase T, decrease k
      • cooling shifts equilibrium to produce heat

    15.6.4 The Effect of Catalysts

      • catalysts increase rate at which equilibrium is obtained
      • does not change composition of equilibrium mixture

    15.S: Chemical Equilibrium (Summary) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?