# Worksheet 10B Solutions

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Q1

The Hamiltonian consists of the kinetic and potential energy.

$\hat{H} = \hat{T} + \hat{V} \label{1}$

In atomic units all the constants are set to equal 1, $$h=1$$

Therefore the kinetic term in the Hamiltonian is transformed

$\hat{T} = \dfrac{-\hbar^2}{2m} \bigtriangledown^2 \psi \Longrightarrow \dfrac{-1}{2} \bigtriangledown^2 \psi \label{2}$

The potential terms in the $$H_2^+$$ molecule are then given in atomic units

$\hat{V} = \dfrac{-1}{r_A} + \dfrac{-1}{r_B} \label{3}$

## Q2

The potential term for the interaction between the two protons in atomic units is

$\hat{V} = \dfrac{1}{r_{AB}} \label{4}$

To describe the Hamiltonian for the electron both the kinetic term for the nuclei can be ignored. This term would impart a constant energy to the electron that is independent of the electron's motion for each position of the nuclei.

$E_{total} = E_{e^-} + T_{molecule} \label{5}$

You calculate the electron energy using the Hamiltonian in question 1 for a nuclei position, then move the nuclei and calculate the electron energy again. And repeat for as many nuclei positions as necessary, in a computer.

For the variation method, I would start with a linear combination of the hydrogen atomic orbitals, like in the next question.

$\Phi = c_1\psi +c_2\psi \label{6}$

When we do this problem in the computer almost all programs use a basis set of Gaussian functions to create the orbitals.

## Q3

The terms that arise from multiplying the linear combination of the wave function are

$<\phi|\phi> = <c_11s_A + c_2 1s_B |c_11s_A + c_2 1s_B >$

$= <c_11s_A|c_11s_A> + <c_11s_A|c_21s_B> + <c_21s_B|c_11s_A> +<c_21s_B|c_21s_B> \label{7}$

The first term

$<c_11s_A|c_11s_A> = c_1^2 <1s_A|1s_A> = c_1^2 \label{8}$

The overlap integral $$<c_11s_A|c_21s_B>$$ is how much of the 1s orbital atom A occupies the same space as the 1s orbital on atom B. What is size of the area where $$1s_A$$ and $$1s_B$$ overlap?

Using the overlap integral the simple form for $$<\phi|\phi>$$ is

$<c_11s_A|c_11s_A> + <c_11s_A|c_21s_B> + <c_21s_B|c_11s_A> +<c_21s_B|c_21s_B>$

$= c_1^2 + 2c_1c_2S + c_2^2 \label{9}$

According to the graph as the nuclei become farther apart the overlap approaches zero

#### In the energy equation the same four terms arise with the Hamiltonian.

$<\phi|\hat{H}|\phi> = <c_11s_A + c_2 1s_B |\hat{H}|c_11s_A + c_2 1s_B >$

$= <c_11s_A|\hat{H}|c_11s_A> + <c_11s_A|\hat{H}|c_21s_B> + <c_21s_B|\hat{H}|c_11s_A> +<c_21s_B|\hat{H}|c_21s_B> \label{10}$

#### To simplify the first term we remember that the Hamiltonian is the molecular version:

$\hat{H} = \dfrac{-1}{2} \bigtriangledown^2 + \dfrac{-1}{r_A} + \dfrac{-1}{r_B} +\dfrac{1}{r_{AB}} \label{11}$

$<c_11s_A|\hat{H}|c_11s_A> = <c_11s_A|\dfrac{-1}{2} \bigtriangledown^2 + \dfrac{-1}{r_A} + \dfrac{-1}{r_B} + \dfrac{1}{r_{AB}}|c_11s_A> \label{12}$

#### The first two terms of the hamiltonian are the same as atomic hydrogen and can be seperated

$<c_11s_A|\dfrac{-1}{2} \bigtriangledown^2 + \dfrac{-1}{r_A} + \dfrac{-1}{r_B} + \dfrac{-1}{r_{AB}}|c_11s_A> = <c_11s_A|\hat{H}_{atomic}|c_11s_A> + <c_11s_A|\dfrac{-1}{r_B}|c_11s_A> + <c_11s_A|\dfrac{1}{r_{AB}}|c_11s_A> \label{13}$

#### Then since we have hydrogen wave functions we have already solved the energy for the 1s orbital.

$<c_11s_A|\hat{H}_{atomic}|c_11s_A> + <c_11s_A|\dfrac{-1}{r_B}|c_11s_A> +<c_11s_A|\dfrac{1}{r_{AB}}|c_11s_A> = c_1^2E_{1s_A} + c_1^2<1s_A|\dfrac{-1}{r_B}|1s_A> + <c_11s_A|\dfrac{1}{r_{AB}}|c_11s_A> \label{14}$

#### Using the exchange and Coulomb integrals the first term is

$= c_1^2E_{1s_A} - c_1^2J + c_1^2\dfrac{1}{r_{AB}} \label{15}$

#### Similarly for the second term we have

$<c_11s_A|\dfrac{-1}{2} \bigtriangledown^2 + \dfrac{-1}{r_A} + \dfrac{-1}{r_B} + \dfrac{1}{r_{AB}}|c_21s_B> = <c_11s_A|\hat{H}_{atomic}|c_21s_B> + <c_11s_A|\dfrac{-1}{r_A}|c_21s_B> + <c_11s_A|\dfrac{1}{r_{AB}}|c_21s_B> \label{16}$

$<c_11s_A|\hat{H}_{atomic}|c_21s_B> + <c_11s_A|\dfrac{-1}{r_A}|c_21s_B> + <c_11s_A|\dfrac{1}{r_{AB}}|c_21s_B>$

$= c_1c_2E_{1s_B}<1s_A|1s_B> + c_1c_2\dfrac{1}{r_{AB}}<1s_A|1s_B> + c_1c_2<1s_A|\dfrac{-1}{r_A}|1s_B>$

$= c_1c_2E_{1s_B}S + c_1c_2\dfrac{1}{r_{AB}}S - c_1c_2K \label{17}$

#### Following these same patterns we would have for the third term

$= c_1c_2E_{1s_A}S + c_1c_2\dfrac{1}{r_{AB}}S - c_1c_2K \label{18}$

#### And the fourth term

$= c_2^2E_{1s_B} - c_2^2J + c_2^2\dfrac{1}{r_{AB}} \label{19}$

#### Thus we have

$E_+ = 2c^2E_{1s}S + 2c^2\dfrac{1}{r_{AB}}S - 2c^2K + 2c^2E_{1s} - 2c^2J + 2c^2\dfrac{1}{r_{AB}} \label{20}$

And with only two functions we did last week that $$c^2 = \dfrac{1}{2}$$

$E_+ = E_{1s}S +\dfrac{1}{r_{AB}}S - K + E_{1s} - J + \dfrac{1}{r_{AB}} \label{21}$

#### Rearrange them so that it becomes clear

$E_+ = E_{1s}S + \dfrac{1}{r_{AB}}S + E_{1s} + \dfrac{1}{r_{AB}} - K - J = (1 +S)( E_{1s} + \dfrac{1}{r_{AB}} ) - K - J \label{22}$

$\dfrac{E_+}{1+S} = E_{1s} + \dfrac{1}{r_{AB}} - \dfrac{K + J}{1+S} \label{23}$

Worksheet 10B Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.