# 1: Continuous Distributions (Worksheet)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Name: ______________________________

Section: _____________________________

Student ID#:__________________________

Work in groups on these problems. You should try to answer the questions without referring to your textbook. If you get stuck, try asking another group for help.

A continuous probability distribution represents the histogram of sampling a random variable $$x$$ that can take on any value (i.e., is continuous). There are many different characteristics used to describe a distribution $$D(x)$$. Each of the characteristics below commonly show up in discussions of quantum mechanics.

• The integrated value ($$A$$): This is the sum over the distribution over all possible values of $$x$$. Graphically, this is the area under the distribution. $A= \int_{-\infty}^{\infty} D(x)\, dx \label{1}$ If the range of $$x$$ is less than $$-\infty$$ to $$\infty$$ (e.g., from $$a$$ to $$b)$$, then $$A$$ is given by $A = \int_{a}^{b} D(x)\, dx \label{2}$
• The expectation value ($$\langle x \rangle$$): This is a different term that is used synonymously with the average (or mean) of $$x$$ over the distribution. The mean is given by $\bar{x} = \langle x \rangle = \int_{a}^{b} x D(x)\, dx \label{3}$ Notice the difference between Equations $$\ref{2}$$ and $$\ref{3}$$.
• The most probable value ($$x_{mp}$$): This is the value of $$x$$ at the peak of $$D(x)$$. This is determined from basic calculus for determining extrema and via identifying when the derivative of the distribution is zero. $\left( \dfrac{dD(x)}{dx} \right)_{x_{mp}} = 0 \label{4}$
• The standard deviation ($$\sigma_x$$): This is the a measure of the spread of the distribution and is given by $\sigma_x^2 = \int_{a}^{b} (x-\bar{x})^2 D(x) \,dx \label{5}$

## Applications

One example distribution is the Sine-squared distribution:

$D(x) = N_o \sin^2 (N_1 x)$

where $$N_o$$ and $$n_1$$ are constants. The range of $$x$$ goes from $$0$$ to $$\pi$$.

Another is the Gaussian distribution:

$D(x) = N_oE^{-N_1x^2}$

where $$N_o$$ and $$N_1$$ are constants. The range of $$x$$ goes from $$-\infty$$ to $$\infty$$.

### Q1

Plot the Sine-squared and Gaussian distributions.

### Q2

Calculate the four characteristics defined above for the Gaussian distribution.

## Interpretation of a Probability Distribution

A probability distribution is defined such that the likelihood of a value of $$x$$ being sampled between $$a$$ and $$b$$ is equal to the integral (area under the curve) between $$a$$ and $$b$$, e.g., Equation $$\ref{2}$$. This integrated values is always positive and if the full range of possible $$x$$ values are integrated over, then the area under the curve from negative infinity to positive infinity is one.

$A = \int_{a}^{b} D(x) dx = 1 \label{6}$

For continuous probability distributions, we cannot calculate exact probability for a specific outcome, but instead we calculate a probability for a range of outcomes (e.g., the probability that a sampled value of $$x$$ is greater than 10). The probability that a continuous variable will take a specific value is equal to zero. Because of this, we can never express continuous probability distribution in a tabular form. Another way to say this is that the probability for $$x$$ to take any single value $$a$$ (that is $$a ≤ x ≤ a$$) is zero, because an integral with the same upper and lower limits is always equal to zero.

$A = \int_{a}^{a} D(x) dx = 0 \label{7}$

### Q3

What is the expression for finding $$x$$ exactly at 0 for a Gaussian probability distribution?

### Q4

What is the expression for finding $$x$$ between one standard deviation on each side of 0 for a Gaussian probability distribution?

### Q5

Use the information above to identify the constants $$N_o$$ and $$N_1$$ in the Gaussian Distribution? These integrals may be needed:

$\int _{-\infty }^{\infty }e^{-a(x+b)^{2}}\,dx={\sqrt {\frac {\pi }{a}}}.$

$\int _{-\infty }^{\infty }e^{-x^{2}}dx=2\int _{0}^{\infty }e^{-x^{2}}dx$

### Q6

What is the expression for finding $$x$$ between $$0$$ and $$+\infty$$ for a Gaussian probability distribution when $$N_o$$ and $$N_1$$ are determined?

### Q7

The Gaussian distribution is called a Normal distribution (sometimes called a bell curve) if its standard deviation is 1 and the area under the distribution is 1 from $$-\infty$$ to $$+\infty$$. What is the mathematical formula of the Normal distribution.

### Q8

A function converges if it approach a limit more and more closely as an argument (variable) of the function increases or decreases (i.e., Horizontal Asymptotes). For example, the function $$y = \frac{1}{x}$$ converges to zero as $$x$$ increases. Gaussian functions converge to zero with respect to the argument approaching $$-\infty$$ and $$+\infty$$. Explain why this is a required property of a probability distribution.

1: Continuous Distributions (Worksheet) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.