# Worksheet 7B Solutions

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

## Q1

We are given the solution to the variational theory for the harmonic oscillator with trial function:

$| \phi(x)\rangle =\dfrac{1}{1+\beta x^2}\label{1}$

$E_\phi=\dfrac{\langle\phi|\hat H|\phi\rangle}{\langle\phi |\phi\rangle}\label{2}$

$E_\phi=\dfrac{\langle\phi|\hat H|\phi\rangle}{\langle\phi |\phi\rangle}=\dfrac{\hbar^2\beta}{4\mu}+\dfrac{k}{2\beta}\label{3}$

To solve for the energy we need to minimize the parameter $$\beta$$

$\dfrac{dE_\phi}{d\beta}=0\label{4}$

$\dfrac{dE_\phi}{d\beta}= \dfrac{\hbar^2}{4\mu} - \dfrac{k}{2\beta^2} = 0 \label{5}$

Solve for $$\beta$$

$\beta^2 = \dfrac{4k\mu}{2\hbar^2} = \dfrac{2k\mu}{\hbar^2}\label{6}$

$\beta = \sqrt{ \dfrac{2k\mu}{\hbar^2}} \label{7}$

Put beta back in to the formula to get the energy

$E_\phi = \dfrac{\hbar^2 \sqrt{ \dfrac{2k\mu}{\hbar^2}}}{4\mu}+\dfrac{k}{2 \sqrt{ \dfrac{2k\mu}{\hbar^2}}} \label{8}$

Simplify

$E_\phi = \dfrac{\hbar}{2}\sqrt{\dfrac{k}{\mu}}(\dfrac{\sqrt{2}}{2} + \dfrac{1}{\sqrt{2}}) \label{9}$

$E_\phi = \dfrac{\hbar}{\sqrt{2}}\sqrt{\dfrac{k}{\mu}} \label{10}$

I left the square roots seperate because from the Harmonic Oscillator remember the angular frequency $$\omega = \sqrt{\dfrac{k}{\mu}}$$

$E_\phi = \dfrac{\hbar}{\sqrt{2}}\omega \label{11}$

Compare this to the ground state Harmonic Oscillator energy

## Q2

The ground state quantum number is $$n=0$$

$E_{n=0, H.O.} = \hbar\omega(n + \dfrac{1}{2}) = \dfrac{\hbar\omega}{2} \label{12}$

The approximation with this trail wave function is not great.

$E_\phi = \dfrac{\hbar}{\sqrt{2}}\omega > E_{n=0, H.O.} =\dfrac{\hbar\omega}{2} \label{13}$

The percent difference

$\dfrac{E_\phi - E_{n=0, H.O.} }{E_{n=0, H.O.}} = \dfrac{\dfrac{\hbar\omega}{\sqrt{2}} - \dfrac{\hbar\omega}{2}}{ \dfrac{\hbar\omega}{2}} \label{14}$

$\dfrac{E_\phi - E_{n=0, H.O.} }{E_{n=0, H.O.}} = 2({\dfrac{1}{\sqrt{2}} - \dfrac{1}{2}}) = \dfrac{2}{\sqrt{2}} - 1 =\sqrt{2} -1 = 0.414 \label{15}$

$$40\%$$ that's pretty bad.

If we use the trial function: $$|\phi(x) \rangle =e^{-\beta x^2}$$

You should get the exact energy for the Harmonic Oscillator since it is the exact wavefunction.

Worksheet 7B Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.