Worksheet 6B Solutions

Jonathan Sarker

November 7, 2016

1. The Hamiltonian for the harmonic oscillator is:

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}}+\frac{k x^{2}}{2} \tag{1}
\end{equation*}
$$

We are asked to use the trial function

$$
\begin{equation*}
|\psi(x)\rangle=\frac{1}{1+\beta x^{2}} \tag{2}
\end{equation*}
$$

to find an approximate energy:

$$
\begin{equation*}
E_{\phi}=\frac{\langle\phi| \hat{H}|\phi\rangle}{\langle\phi \mid \phi\rangle} \tag{3}
\end{equation*}
$$

(a) We evaluate the denominator of the expression, $\langle\phi \mid \phi\rangle$ via:

$$
\begin{equation*}
\langle\phi \mid \phi\rangle=\int_{-\infty}^{\infty} \frac{d x}{\left(1+\beta x^{2}\right)^{2}}=\frac{\pi}{2 \beta^{1 / 2}} \tag{4}
\end{equation*}
$$

(b) The function is smooth as both it and its first derivative are finite. The limits of the integral are negative to positive infinity.
(c) The wavefunction $|\phi\rangle$ is not normalized. Normalization is inherent in the equation (1), with the denominator being the normalization constant squared.
2. We are required to evaluate the numerator, $\langle\phi| \hat{H}|\phi\rangle$
(a) This requires us to evaluate the separate terms:

$$
\begin{gather*}
\langle\phi|-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}}+\frac{k x^{2}}{2}|\phi\rangle=\langle\phi|-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}}|\phi\rangle+\langle\phi| \frac{k x^{2}}{2}|\phi\rangle \tag{5}\\
\langle\phi|-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}}|\phi\rangle=-\frac{\hbar^{2}}{2 \mu}\left(\int_{-\infty}^{\infty} \frac{2 \beta d x}{\left(1+\beta x^{2}\right)^{2}}+\int_{-\infty}^{\infty} \frac{4 \beta x^{2} d x}{\left(1+\beta x^{2}\right)^{4}}\right) \tag{6}\\
\langle\phi| \frac{k x^{2}}{2}|\phi\rangle=\frac{k}{2} \int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(1+\beta x^{2}\right)} \tag{7}
\end{gather*}
$$

We will make use of the following integrals:

$$
\begin{align*}
& \int_{-\infty}^{\infty} \frac{d x}{\left(1+\beta x^{2}\right)^{2}}=\frac{\pi}{2 \beta^{1 / 2}} \tag{8}\\
& \int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(1+\beta x^{2}\right)^{2}}=\frac{\pi}{2 \beta^{3 / 2}} \tag{9}
\end{align*}
$$

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(1+\beta x^{2}\right)^{4}}=\frac{\pi}{16 \beta^{3 / 2}} \tag{10}
\end{equation*}
$$

Using relations (8) and (10) to simplify (6) and relation (9) to simplify (7) the numerator terms become:

$$
\begin{equation*}
\langle\phi|-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}}+\frac{k x^{2}}{2}|\phi\rangle=-\frac{\hbar^{2}}{2 \mu}\left(2 \beta\left(\frac{\pi}{2 \beta^{1 / 2}}\right)+4 \beta\left(\frac{\pi}{16 \beta^{3 / 2}}\right)\right)+\frac{k}{2}\left(\frac{\pi}{16 \beta^{3 / 2}}\right) \tag{11}
\end{equation*}
$$

Putting together results (11) and (4), so multiplying the above terms by $\frac{2 \beta^{1 / 2}}{\pi}$ we finally have:

$$
\begin{equation*}
E_{\phi}=\frac{\langle\phi| \hat{H}|\phi\rangle}{\langle\phi \mid \phi\rangle}=-\frac{\hbar^{2}}{\mu}\left(\beta+\frac{1}{8 \beta}\right)+\frac{k}{32 \beta}=-\frac{\hbar^{2}}{\mu} \beta+\left(\frac{k}{32}-\frac{\hbar^{2}}{8 \mu}\right) \frac{1}{\beta} \tag{12}
\end{equation*}
$$

