Skip to main content
Chemistry LibreTexts


  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    • Workgroup 1: Valence Bond Orbitals for Hydrogen
      A quantum description of bonding in molecules requires generating the wavefunctions that are solutions to the multi-body (involving both nuclei and electrons) Schrödinger equation. These wavefunctions must describe each electron as accurately as quantum mechanics can. The two theories commonly used in constructing these wavefunctions are valence bond (VB) theory and molecular orbital (MO) theory. This activity addresses a topical application of these theories to diatomic hydrogen.
    • Workgroup 2: Symmetry and Assigning Point Groups
      The symmetry properties of objects (and molecules) may be described in terms of the presence of certain symmetry elements and their associated symmetry operations. Each molecule has a set of symmetry operations that describes the molecule's overall symmetry. This set of operations define the point group of the molecule. The process used to assign a molecule to a point group is straightforward with a few exceptions.
    • Workgroup 3: Using Symmetry to Solve Integrals
      Higher Symmetry properties can be used to evaluate if certain integrals will be zero or not. This is useful in many forms of spectroscopy.
    • Workgroup 4: Deriving Selection Rules with Symmetry
      In chemistry and physics, selection rules define the transition probability from one eigenstate to another eigenstate. In this Workgroup activity, we are going to discuss the transition moment, which is the key to understanding the intrinsic transition probabilities. Selection rules have been divided into the electronic spectroscopy, vibrational spectroscopy, and rotational spectroscopy.
    • Workgroup 5: Translation Partition Function
      Deriving the Translation Partition Function.
    • Workgroup 6: Rotational Partition Functions
      Deriving the Rotation Partition Function.

    Worksheets is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?