Skip to main content
Chemistry LibreTexts

13: The Flow of Genetic Information

  • Page ID
    165237
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Figure 5.3.1.pngFigure 5.3.3: RNA structure

    Cells make several different kinds of RNA:

    • mRNAs that code for proteins
    • rRNAS that form part of ribosomes
    • tRNAs that serve as adaptors between mRNA and amino acids during translation
    • Micro RNAs that regulate gene expression
    • Other small RNAs that have a variety of functions.
    Figure 5.3.4.pngFigure 5.3.5):
    • A transcription start site (this the base in the DNA across from which the first RNA nucleotide is paired).
    • A -10 sequence: this is a 6 bp region centered about 10 bp upstream of the start site. The consensus sequence at this position is TATAAT. In other words, if you count back from the transcription start site, which by convention, is called the +1, the sequence found at -10 in the majority of promoters studied is TATAAT).
    • A -35 sequence: this is a sequence at about 35 basepairs upstream from the start of transcription. The consensus sequence at this position is TTGACA.
    Figure 5.3.6.pngFigure 5.3.8: Assembly of basal transcription complex and initiation of transcription

    All three eukaryotic RNA polymerases need additional proteins to help them get transcription started. In prokaryotes, RNA polymerase by itself can initiate transcription (remember that the sigma subunit is a subunit of the prokaryotic RNA polymerase). The additional proteins needed by eukaryotic RNA polymerases are referred to as transcription factors. We will see below that there are various categories of transcription factors.

    Finally, in eukaryotic cells, transcription is separated in space and time from translation. Transcription happens in the nucleus, and the mRNAs produced are processed further before they are sent into the cytoplasm. Protein synthesis (translation) happens in the cytoplasm. In prokaryotic cells, mRNAs can be translated as they are coming off the DNA template, and because there is no nucleus, transcription and protein synthesis occur in a single cellular compartment.

    Like genes in prokaryotes, eukaryotic genes also have promoters. Eukaryotic promoters commonly have a TATA box, a sequence about 25 basepairs upstream of the start of transcription that is recognized and bound by proteins that help the RNA polymerase to position itself correctly to begin transcription. (Some eukaryotic promoters lack TATA boxes, and have, instead, other recognition sequences to help the RNA polymerase find the spot on the DNA where it spot on the DNA where it binds and initiates transcription.)

    We noted earlier that eukaryotic RNA polymerases need additional proteins to bind promoters and start transcription. What are these additional proteins that are needed to start transcription? General transcription factors are proteins that help eukaryotic RNA polymerases find transcription start sites and initiate RNA synthesis. We will focus on the transcription factors that assist RNA polymerase II. These transcription factors are named TFIIA, TFIIB and so on (TF= transcription factor, II=RNA polymerase II, and the letters distinguish individual transcription factors).

    Transcription in eukaryotes requires the general transcription factors and the RNA polymerase to form a complex at the TATA box called the basal transcription complex or transcription initiation complex. This is the minimum requirement for any gene to be transcribed. The first step in the formation of this complex is the binding of the TATA box by a transcription factor called the TATA Binding Protein or TBP. Binding of the TBP causes the DNA to bend at this spot and take on a structure that is suitable for the binding of additional transcription factors and RNA polymerase. As shown in the figure at left, a number of different general transcription factors, together with RNA polymerase (Pol II) form a complex at the TATA box.

    The final step in the assembly of the basal transcription complex is the binding of a general transcription factor called TFIIH. TFIIH is a multifunctional protein that has helicase activity (i.e., it is capable of opening up a DNA double helix) as well as kinase activity. The kinase activity of TFIIH adds a phosphate onto the C-terminal domain (CTD) of the RNA polymerase. This phosphorylation appears to be the signal that releases the RNA polymerase from the basal transcription complex and allows it to move forward and begin transcription.

    Contributors


    This page titled 13: The Flow of Genetic Information is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Kevin Ahern & Indira Rajagopal.

    • Was this article helpful?