Skip to main content
Chemistry LibreTexts

2.10: Uses of ¹H NMR Spectroscopy

  • Page ID
    469366
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    NMR is used to help identify the product of nearly every reaction run in the laboratory. For example, we said in Section 8.5 that hydroboration–oxidation of alkenes occurs with non-Markovnikov regiochemistry to yield the less highly substituted alcohol. With the help of NMR, we can now prove this statement.

    Does hydroboration–oxidation of methylenecyclohexane yield cyclohexylmethanol or 1-methylcyclohexanol?

    Methylenecyclohexane reacts first with borane and tetrahydrofuran, then hydrogen peroxide and hydroxide to form cyclohexylmethanol or 1-methylcyclohexanol; question mark near structures indicates product is unknown, could be either.

    The 1H NMR spectrum of the reaction product is shown in Figure 13.16a. The spectrum shows a two-proton peak at 3.40 δ, indicating that the product has a –CH2– group bonded to an electronegative oxygen atom (–CH2OH). Furthermore, the spectrum shows no large three-proton singlet absorption near 1 δ, where we would expect the signal of a quaternary –CH3 group to appear. (Figure 13.16b) gives the spectrum of 1-methylcyclohexanol, the alternative product.) Thus, it’s clear that cyclohexylmethanol is the reaction product.

    The 1 H N M R spectrum of cyclohexylmethanol (peaks at 0, 0.9, 1.2, 1.4, 1.7, 2.8. and 3.4) and 1-methylcyclohexanol (peaks at 0, 1.1, and 1.4).
    Figure 13.16: (a) The 1H NMR spectrum of cyclohexylmethanol, the product from hydroboration–oxidation of methylenecyclohexane, and (b) the 1H NMR spectrum of 1-methylcyclohexanol, the possible alternative reaction product.

    This page titled 2.10: Uses of ¹H NMR Spectroscopy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.