Skip to main content
Chemistry LibreTexts

5.3: Question 5.E.59 PASS - identify central atom hybridization

  • Page ID
    452258
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    This work by Jensen, Brewer, Blackstock is licensed under creative commons B Y N C 4.0 and you are free to share and adapt and use for non-commercial purposes as long as you give appropriate credit and link to the license and indicate if changes were made

    Exercise \(\PageIndex{5.E.59}\)

    Identify the hybridization of the central atom in each of the following molecules and ions that contain multiple bonds: (parts b-f)

    (b) CS2

    (c) Cl2CO (C is the central atom)

    (d) Cl2SO (S is the central atom)

    (e) SO2F2 (S is the central atom)

    (f) XeO2F2 (Xe is the central atom)

    Answer

    (b) sp

    (c) sp2

    (d) sp3

    (e) sp3

    (f) sp3d

    See LibreText 5.3 Hybrid Atomic Orbitals

    Strategy Map
    Step Hint
    1. Create a Lewis Structure of the molecule. See LibreText section 4.4 (Lewis Symblos and Structures)

    2. Determine the Electron-Pair geometry of the molecule.

    Recall using VSEPR to determine electron pair geometry (see LibreText section 5.1 Molecular Structure and Polarity)

    3. Identify the hybridization of the center atom based on the molecule's Electron-Pair geometry. The Hybridization of the center atom will be determined by the electron-pair geometry, not the atom itself. For example, in a linear molecule, the center atoms hybridization will always be sp.
    Solution

    (b) CS2

    16 valence electrons, C central atom

    CS2.png

    This molecule has a linear electron-pair geometry: sp hybridized

    (c) Cl2CO (C is the central atom)

    26 valence electrons

    Cl2SO.png

    This molecule has a trigonal planar electron-pair geometry: sp2 hybridized

    (d) Cl2SO (S is the central atom)

    26 valence electrons

    Cl2SO.png

    This molecule has a tetrahedral electron-pair geometry: sp3 hybridized

    (e) SO2F2 (S is the central atom)

    32 valence electrons

    SO2F2.png

    This molecule has a tetrahedral electron-pair geometry: sp3 hybridized

    (f) XeO2F2 (Xe is the central atom)

    34 valence electrons

    XeO2F2.png

    This molecule has a trigonal bipyramidal electron-pair geometry: sp3d hybridized

    Guided Solution

    Download Guided Solution as a pdf

    Guided Solution Hint
    This is a theory problem that requires you to use your knowledge of molecular bonding and identify atomic orbital hybridization. See LibreText 5.3 Hybrid Atomic Orbitals

    Identify the hybridization of the central atom in each of the following molecules and ions that contain multiple bonds: (only b-f)

    (b) CS2

    (c) Cl2CO (C is the central atom)

    (d) Cl2SO (S is the central atom)

    (e) SO2F2 (S is the central atom)

    (f) XeO2F2 (Xe is the central atom)

     
    What is the pattern associated with atomic orbital hybridization?

    The Hybridization of the center atom will be determined by the electron-pair geometry, not the atom itself. For example, in a linear molecule, the center atoms hybridization will always be sp.

    Number of hybrid orbitals = Number of orbitals mixed.

    Hybrids named by type and number of orbitals mixed.

    Complete Solution:

    (b) CS2

    16 valence electrons, C central atom

    CS2.png

    This molecule has a linear electron-pair geometry: sp hybridized

    (c) Cl2CO (C is the central atom)

    26 valence electrons

    Cl2CO.png

    This molecule has a trigonal planar electron-pair geometry: sp2 hybridized

    (d) Cl2SO (S is the central atom)

    26 valence electrons

    Cl2SO.png

    This molecule has a tetrahedral electron-pair geometry: sp3 hybridized

    (e) SO2F2 (S is the central atom)

    32 valence electrons

    SO2F2.png

    This molecule has a tetrahedral electron-pair geometry: sp3 hybridized

    (f) XeO2F2 (Xe is the central atom)

    34 valence electrons

    XeO2F2.png

    This molecule has a trigonal bipyramidal electron-pair geometry: sp3d hybridized

    Recognize this is a linear molecule, two electron domains: s + p = sp Hybridized

    The double bond counts as one electron domain.

    three electron domains: s + p + p = sp2 hybridized

    The double bond counts as one electron domain, the lone pair is one electron domain, and the two single bonds are each one electron domain.

    four electron domains: s + p + p + p = sp3 hybridized

    four electron domains: s + p + p = sp3 hybridized

    five electron domains: s + P + p + d = sp3d hybridized

    Check your work!

    Verify your Lewis Structure account for all the valence electrons and that you have counted electron domains off the central atom correctly. The name of our electron pair geometry and number of electron domains leads us to the correct hybridization.

    Why does this answer make chemical sense?

    Hybrid orbitals form due to the covalent bonding within molecules. When two or more atoms create a covalent bond, their atomic orbitals will overlap and form such hybrid orbitals. In this case, we are looking at the hybridization of the center atom to see what kind of hybridization is happening to overlap with all the atoms. When molecules get larger and more atoms are involved, more bonds will be made, and thus more orbitals will be involved in bonding. This is why a linear molecule only uses two orbitals (s + p) and an octahedral molecule uses six orbitals (s + p + p + p + d + d).

    Valence electrons are outer shell electrons. Look at the condensed electron configuration.

    (question source from page titled 8E: Advanced Theories of Covalent Bonding (Execricse) ttps://chem.libretexts.org/Bookshelves/General_Chemistry/Chemistry_1e_(OpenSTAX)/08%3A_Advanced_Theories_of_Covalent_Bonding/8.E%3A_Advanced_Theories_of_Covalent_Bonding_(Exercises) - Chemistry LibreTexts, shared under a CC BY 4.0 license, authored, remixed, and/or curated by OpenStax, https://openstax.org/books/chemistry/pages/8-exercises, Access for free at https://openstax.org/books/chemistry/pages/1-introduction)


    5.3: Question 5.E.59 PASS - identify central atom hybridization is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.