Skip to main content
Chemistry LibreTexts

14: Halogenation of Alkenes - Addition of X₂

  • Page ID
    489757
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Bromine and chlorine add rapidly to alkenes to yield 1,2-dihalides, a process called halogenation. For example, nearly 50 million tons of 1,2-dichloroethane (ethylene dichloride) are synthesized worldwide each year, much of it by addition of Cl2 to ethylene. The product is used both as a solvent and as starting material for the manufacture of poly(vinyl chloride), PVC, the third most widely synthesized polymer in the world afterpolyethelyne and polypropolyne. Fluorine is too reactive and difficult to control for most laboratory applications, and iodine does not react with most alkenes.

    In a reaction, ethylene reacts with molecular chlorine to form 1,2-dichloroethane (ethylene dichloride).

    Based on what we’ve seen thus far, a possible mechanism for the reaction of bromine with alkenes might involve electrophilic addition of Br+ to the alkene, giving a carbocation intermediate that could undergo further reaction with Br to yield the dibromo addition product.

    A possible mechanism for the reaction of ethylene with molecular bromine to form a transition state and product, in which each carbon is bonded to a bromine atom.

    Although this mechanism seems plausible, it’s not fully consistent with known facts. In particular, it doesn’t explain the stereochemistry of the addition reaction. That is, the mechanism doesn’t account for which product stereoisomer is formed.

    When the halogenation reaction is carried out on a cycloalkene, such as cyclopentene, only the trans stereoisomer of the dihalide addition product is formed, rather than the mixture of cis and trans isomers that might have been expected if a planar carbocation intermediate were involved. We say that the reaction occurs with anti stereochemistry, meaning that the two bromine atoms come from opposite faces of the double bond—one from the top face and one from the bottom face.

    In a reaction, cyclopentene reacts with molecular bromine to form trans-1,2-dibromocyclopentane (sole product). Cis-1,2-dibromocyclopentane is not formed.

    An explanation for the observed stereochemistry of addition was suggested in 1937 by George Kimball and Irving Roberts, who proposed that the reaction intermediate is not a carbocation but is instead a bromonium ion, \(\ce{R2Br^{+}}\), formed by electrophilic addition of Br+ to the alkene. (Similarly, a chloronium ion contains a positively charged, divalent chlorine, R2Cl+.) The bromonium ion is formed in a single step by interaction of the alkene with Br2 and the simultaneous loss of Br.

    A reaction mechanism shows an alkene reacts with molecular bromine to form a bromonium ion and a bromide ion.

    How does the formation of a bromonium ion account for the observed anti stereochemistry of addition to cyclopentene? If a bromonium ion is formed as an intermediate, we can imagine that the large bromine atom might “shield” one side of the molecule. Reaction with Br ion in the second step could then occur only from the opposite, unshielded side to give the trans product.

    A reaction shows cyclopentene reacts with molecular bromine to form bromonium ion intermediate, which forms trans-1,2-dibromo-cyclopentane. The intermediate is also depicted by its electrostatic potential map.

    Mechanism for the Addition of Halogen to E or Z Alkenes

    The products for addition of halogen to alkenes seems straightforward, with each halogen added to each double bond carbon. However, the addition proceeds with a unique stereochemistry feature that needs special attention. It turns out that the halogen atoms are added via anti addition to the double bond, as examples shown here:

    (E)-2-butene added with Br2 in the presence of CH2CL2 produces (2R,3S)-2,3-dibromobutane
    Figure 1 Anti addition product

    The mechanism that accounts for the anti addition of halogen involves the electron pairs transferred in a way that is different to what we are familiar with, and the formation of the cyclic halonium ion intermediate. We will take the addition of bromine to (E)-2-butene as example to explain the mechanism.

    ""
    Figure 2 Mechanism: addition of Br2 to E-2-butene

    When Br2 molecule approaching alkene in the first step, the electron density of the π bond in alkene repels electron density in the bromine, polarizing the bromine molecule and make the bromine atom that is closer to the double bond electrophilic. The alkene donate a pair of π electrons to the closer bromine, causing the displacement of the bromine atom that is further away. The lone pair on the closer bromine atom then acts as nucleophile to attack the other sp2 carbon. Thus, the same bromine atom is both electrophile and the nucleophile, and two single bonds are formed between the two sp2 carbons and the closer bromine that gives the cyclic bromonium ion intermediate.

    In the second step, the nucleophilic bromide, Br– (generated in step 1), attacks the carbon of the cyclic intermediate. Since the bottom side of the intermediate is blocked by the ring, the Br– can only attack from the top side, that results in the anti position of the two Br in the product. The attack is similar to SN2 reaction and cause the ring to open and the formation of vicinal dibromide. For the above example, the two carbons in the bromonium ion intermediate are in same chemical environment, so they both have the same chance to be attacked by Br–, as shown in blue and red arrows. The two attacks result in the same product, the meso compound (2R,3S)-2,3-dibromobutane, in this reaction.

    Next, let’s exam the addition of bromine to (Z)-2-butene. As you may expect, the reaction goes through the same mechanism that involves the cyclic bromonium ion intermediate, however the products have different stereochemistry features.

    ""
    Figure 10.4d Mechanism: addition of Br2 to (Z)-2-butene

    In the addition of Br2 to (Z)-2-butene, the attack of Br-to either carbon in bromonium ion by following blue or red arrow results in different enantiomer (step 2 in above mechanism). Since both carbons have the same chance to be attacked, so the product is the 50:50 racemic mixture of the two enantiomer.

    Starting from the two different diastereomers, (E)-2-butene and (Z)-2-butene,the addition reaction produces different stereoisomers. The addition of (E)-2-butene gives one product, the meso compound (2R,3S)-2,3-dibromobutane, while the addition of (Z)-2-butene produces the racemic mixture of two enantiomers, (2S,3S)-2,3-dibromobutane and (2R,3R)-2,3-dibromobutane. Such reaction, the one where a particular stereoisomer of the starting material yields a specific stereoisomer of the product is called stereospecific reaction. The anti addition of a halogen to an alkene is an example of a stereospecific reaction.

    Worked Example \(\PageIndex{}\)

    Show the product of the following addition.

    cyclohexene added with Br2 in the presence of CH2Cl2 produces...

    Solution

    solution is a racemic mixture, two enantiomers of trans-1,2-dibromocyclohexane

    The formation of the racemic mixture product can be explained by the mechanism:

    ""

    Exercise \(\PageIndex{1}\)

    What product would you expect to obtain from the addition of Cl2 to 1,2-dimethylcyclohexene? Show the stereochemistry of the product.

    Answer

    trans-1,2-Dichloro-1,2-dimethylcyclohexane.

    Exercise \(\PageIndex{2}\)

    The addition of HCl to 1,2-dimethylcyclohexene yields a mixture of two products. Show the stereochemistry of each, and explain why a mixture is formed.

    Answer

    First structure has cyclohexane ring with wedge bonded chlorine, dash bonded methyl at C1, and dash bonded methyl at C2. In second structure, wedge and dash bonds interchange at C1.


    This page titled 14: Halogenation of Alkenes - Addition of X₂ is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.