Arrhenius
(1894)
|
Interested in what the substance does to the state of an aqueous solution. In particular it assesses proton donation to & removal from water using [H3O+] as a proxy. Readily accommodates the pH concept as a measure of the state of a solution. |
Increases
[H3O+]
|
Decreases
[H3O+]
|
\(\underset{acid}{HCl}~+~H_2O~\rightarrow~H_3O^+~+~Cl^-\)
\(\underset{base}{NH_3}~+~H_2O~\rightarrow~NH_4^+~+~OH^-\)
|
Brønsted-Lowry
(1923)
|
Envisions acid-base reactivity in terms of the transfer of an H+ from one substance to another. Allows for conjugate acids and bases and solvent autoionization. |
Donates H+ |
Accepts H+ |
\(\underset{acid}{HCl}~+~\underset{base}{NH_3}~\rightarrow~\underset{conj.~acid}{NH_4^+}~+~\underset{conj.~base}{Cl^-}\)
\(\underset{acid}{HOAc}~+~\underset{base}{NH_3}~\rightarrow~\underset{conj.~acid}{NH_4^+}~+~\underset{conj.~base}{OAc^-}\)
\(\underset{amphoteric}{2~H_2O}~\rightarrow~\underset{conj.~acid}{H_3O^+}~+~\underset{conj.~base}{OH^-}\)
|
Lux-Flood
(1939-~47)
|
Describes reactions involving oxides and oxyanions in terms of the transfer of oxide ion (O2-). Mainly used in geochemistry, although it also can be used to describe some redox reactions. |
Oxide acceptor |
Oxide donor |
\(\underset{acid}{SiO_2}~+~\underset{base}{CaO}~\rightarrow~CaSiO_3\)
\(\underset{base}{H_2O}~+~\underset{acid}{CO}~\rightarrow~H_2~+~CO_2\)
|
Solvent System |
Applies aspects of the Arrhenius , Brønsted-Lowry, and Lux-Flood acid base concepts to solvent cation & anion formation in a generalized reaction. Can be used to describe solution chemistry in nonaqueous solvent systems like BrF3. |
Is a solvent cation or increases the solvent cation concentration, often by receiving a lone pair- bearing group |
Is a solvent anion or increases the solvent anion concentration, often by donating a lone pair- bearing group |
\(\underset{acid}{SbF_5}~+~\underset{base}{BrF_3}~\rightarrow~\underset{conj.~base}{SbF_6^-}~+~\underset{conj.~acid}{BrF_2^+}\)
\(\underset{amphoteric}{2~BrF_3}~\rightarrow~\underset{conj.~acid}{BrF_2^+}~+~\underset{conj.~base}{BrF_4^-}\)
|
Lewis (1923) |
Envisions acid-base reactivity in terms of electron pair donation. Encompasses the Arrhenius , Brønsted-Lowry, Lux-Flood, and Solvent System definitions and readily integrates with molecular orbital descriptions of chemical reactivity in Frontier orbital theory. |
Accepts an electron pair |
Donates an electron pair |
\(\underset{base}{:NH_3}~+~\underset{acid}{BF_3}~\rightarrow~H_3N~+~BF_3\) |
Nucleophile-Electrophile |
Applies the Lewis concept to organic reactivity. Nucleophiles are Lewis bases which tend to react to form a bond with Lewis acid sites called electrophilic centers. |
(The electrophile)
Tends to react by receiving an electron pair from a nucleophile, forming a bond in the process
|
(The nucleophile)
Donates an electron pair to form a bond to an electrophile |
\(\underset{base}{Br^-}~+~\underset{acid}{CH_3-Cl}~\rightarrow~Br-CH_3~+~Cl^-\) |
Usanovich
(1939)
|
Extends Lewis theory to include the donation and acceptance of any number of electrons, whether through the formation of an adduct or electron transfer. |
Accepts electrons |
Donates electrons |
\(\underset{base}{:NH_3}~+~\underset{acid}{BH_3}~\rightarrow~\underset{adduct}{H_3N-BH_3}\)
\(\underset{acid}{Fe^{2+}}~+~\underset{base}{Zn^0}~\rightarrow~Fe^0~+~Zn^{2+}\)
|
Frontier Orbital (1960s) |
Envisions Lewis Acid-base/Electrophile-nucleophile reactions in terms of the donation and acceptance of electrons between the reactant's frontier orbitals. Specifically, the reaction is envisioned in terms of donation of the base's HOMO electrons into the acid's LUMO level. |
Possesses a LUMO capable of forming an occupied bonding MO on mixing with a base's HOMO. |
Possesses an electron-bearing HOMO capable of forming a filled bonding MO on mixing with an acid's LUMO. |

base acid adduct
|