Dilutions with Strong Acids and Strong Bases:
1. V1 = 350. mL of the strong acid will be needed to neutralize the strong base!
3. V1 = 48.0 mL of the strong acid will be needed to neutralize the strong base!
Neutralization Reactions:
5.
a.) NaOH(aq) + HI(aq) → H2O(l) + NaI(aq)
b.) KOH(aq) + HCl(aq) → H2O(l) + KCl(aq)
c.) RbOH(aq) + HBr(aq) → H2O(l) + RbBr(aq)
d.) Ba(OH)2(aq) + 2HClO4(aq) → 2H2O(l) + Ba(ClO4)2(aq)
7. For the following pairs, write their neutralization reaction.
a.) Ca(OH)2(aq) + 2HCl(aq) → 2H2O(l) + CaCl2(aq)
b.) 2NaOH(aq) + H2SO4(aq) → 2H2O(l) + Na2SO4(aq)
c.) Ba(OH)2(aq) + 2HNO3(aq) → 2H2O(l) + Ba(NO3)2(aq)
d.) CsOH(aq) + HBr(aq) → H2O(l) + CsBr(aq)
9.
a.) Ca(s) + 2HCl(aq) → H2(g) + CaCl2(aq)
b.) 2Li(s) + 2HCl(aq) → H2(g) + 2LiCl(aq)
c.) 2K(s) + 2HCl(aq) → H2(g) + 2KCl(aq)
d.) Ba(s) + 2HCl(aq) → H2(g) + BaCl2(aq)
Strong Acids and Bases vs. Weak Acids and Bases:
11. a.) WEAK b.) STRONG c.) WEAK d.) STRONG
13. a.) STRONG b.) STRONG c.) WEAK c.) WEAK
15.
a.) [H3O+] = less than 12.0 M
b.) [H3O+] = 0.010 M
c.) [H3O+] = less than 1.50 M
d.) [H3O+] = 4.30 M
17.
a.) [OH-] = 1.00 M
b.) [OH-] = less than 4.50 M
c.) [OH-] = 1.50 M
d.) [OH-] = 2.30 M
19.
a.) [OH-] = 1.00 M
b.) [OH-] = 3.06 M
c.) [OH-] = 14.0 M
d.) [OH-] = less than 0.00000010 M
BrØnsted-Lowry/Arrhenius Acids and Bases:
21. The base (LiOH) acts as an Arrhenius base because OH- was produced.
23. The base (NH3) is acting as a BrØnsted-Lowry base because it accepted a proton. It started as NH3, and then became NH4+.
25.
a.) Acid, H2SO4(aq) → H+(aq) + HSO4-(aq)
b.) Base, NaOH(aq) → Na+(aq) + OH-(aq)
c.) Acid, CH3COOH(aq) → H+(aq) + CH3COO-(aq)
d.) Base, Ca(OH)2(aq) → Ca2+(aq) + 2OH-(aq)
27.
a.) Acid, HCl(aq) → H+(aq) + Cl-(aq)
b.) Acid, HClO4(aq) → H+(aq) + ClO4-(aq)
c.) Acid, CH2O2(aq) → H+(aq) + CHO2-(aq)
d.) Base, KOH(aq) → K+(aq) + OH-(aq)
BrØnsted-Lowry Acids/Bases & Conjugate Acids/Bases:

29.
a.) HCN: B-Acid; H2O: B-Base
b.) NH3: B-Base; H2O: B-Acid
c.) F-: B-Bases; H2O: B-Acid
d.) H2CO3: B-Acid; H2O: B-Base
31.
a) HF: B-Acid; OH-: B-Base; F-: C-Base; H2O: C-Acid
b.) H3PO4: B-Acid; OH-: B-Base; H2PO4-: C-Base; H2O: C-Acid
c.) HCl: B-Acid; H2O: B-Base; H3O+: C-Acid; Cl-: C-Base
d.) CH3COOH: B-Acid; H2O: C-Base; H3O+: C-Acid; CH3COO-: C-Base
33.
a.) Yes, this is a conjugate acid-base pair
b.) No, this is not a conjugate acid-base pair
c.) Yes, this is a conjugate acid-base pair
d.) Yes, this is a conjugate acid-base pair
35. For the following pairs, state whether they are or not conjugate acid-base pairs.
a.) Yes, this is a conjugate acid-base pair
b.) No, this is not a conjugate acid-base pair
c.) Yes, this is a conjugate acid-base pair
d.) No, this is not a conjugate acid-base pair
37. a.) CNO- b.) F- c.) HS- d.) IO3-
39. a.) HCO3- b.) H3PO4 c.) HSO4- d.) HClO4
41. a.) H2C2O4 b.) HPO42- c.) CH3COOH d.) H2C2COOH
pH & pOH Calculations/Acidic vs. Basic Solutions:
43. a.) Basic b.) Acidic c.) Neutral d.) Basic
45. a.) Basic b.) Acidic c.) Basic d.) Acidic![Text Box: Remember:
[H3O+] [OH-] = 1.0 x10-14](file:///C:/Users/w1034250/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png)
47.
a.) 1.0 x10-6 M
b.) 4.0 x10-5 M
c.) 6.7 x10-3 M
d.) 1.0 x10-9 M

49. A pH of 7 is a neutral solution, which means that there is the same amount of acid and base in the solution.
51. 8 9 10 11 12 13 14
53. a.) Acidic b.) Acidic c.) Neutral d.) Basic
55. a.) 10.00 b.) 7.57 c.) 5.00 d.) 8.52

57. a.) 5.00 b.) 1.46 c.) 3.70 d.) 4.40
![Text Box: ** Remember: ** pOH = -log [OH-]](file:///C:/Users/w1034250/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png)
59. a.) 9.82 b.) 6.46 c.) 14.10 d.) 3.70
![Text Box: **Remember: ** [H3O+] = 10-pH](file:///C:/Users/w1034250/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png)
61. a.) 0.032 M b.) 1.0 x10-4 M c.) 3.2 x10-7 M d.) 1.3 x10-4 M
63. From the following pH values, determine the hydronium concentration.
a.) 1.5 x10-6 M b.) 6.2 x10-5 M c.) 0.66 M d.) 0.010 M
![Text Box: ** Remember: ** [OH-] = 10-pOH](file:///C:/Users/w1034250/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png)
65. a.) 1.0 x10-11 M b.) 4.8 x10-10 M c.) 1.0 x10-8 M d.) 1.0 x10-14 M

67.
a.) pOH = -log (1.0 x10-8) = 8.00 pH = 14.00 – 8.00 = 6.00
b.) pOH = -log (2.5 x10-10) = 9.60 pH = 14.00 – 9.60 = 4.40
c.) pOH = -log (4.0 x10-9) = 8.40 pH = 14.00 – 8.40 = 5.60
d.) pOH = -log (3.8 x10-5) = 4.42 pH = 14.00 – 4.42 = 9.58
69. a.) pH = -log (0.0010) = 3.00
b.) pOH = -log (0.020) = 1.70 ; pH = 14.00 – 1.70 = 12.30
c.) pH = -log (0.0030) = 2.52
d.) pH = -log (0.0040) = 2.40
71. a.) pH = -log (0.00321) = 2.49
b.) pOH = -log (0.0193) = 1.71 ; pH = 14.00 – 1.71 = 12.29
c.) pH = -log (0.000483) = 3.32
d.) pOH = -log (0.148) = 0.83 ; pH = 14.00 – 0.83 = 13.17
73. pH = 14.00 – 6.30 = 7.70 ; Basic
b.) pH = 14.00 – 3.98 = 10.02 ; Basic
c.) pH = 14.00 – 12.74 = 1.26 ; Acidic
d.) pH = 14.00 – 8.29 = 5.71 ; Acidic
75. d.) pH = 12.83
76. a.) pH = 1.89
77. c.) pOH = 1.54
Cumulative/Challenge Problems:
79. [NaOH] = 0.0300 M
The concentration of the strong base is greater than the concentration of the strong acid, which indicates that the solution may be basic.
81. pH = -log (1.0 x10-11) = 11.00
pOH = 14.00 – 11.00 = 3.00 ; The solution is basic.
83. According to the BrØnsted-Lowry definitions of acids and bases, acids are proton (hydrogen ion) donors while bases are proton acceptors. With this information, we know that all acids must have a hydrogen ion to give away, while all bases only have to be able to accept a hydrogen ion. They do not necessarily have to have a hydroxide ion to do this. If the base does have a hydroxide ion, then the hydrogen ion accepted will form water with the hydroxide ion present.