Skip to main content
Chemistry LibreTexts

6: Covalent Compounds

  • Page ID
    • 6.1: Molecules and Molecular Compounds
      There are two fundamentally different kinds of chemical bonds (covalent and ionic) that cause substances to have very different properties. The atoms in chemical compounds are held together by attractive electrostatic interactions known as chemical bonds. The molecular formula of a covalent compound gives the types and numbers of atoms present. Diatomic molecules contain two atoms, and polyatomic molecules contain more than two.
    • 6.2: Lewis Dot and Bonding
      Why are some substances chemically bonded molecules and others are an association of ions? The answer to this question depends upon the electronic structures of the atoms and nature of the chemical forces within the compounds. Although there are no sharply defined boundaries, chemical bonds are typically classified into three main types: ionic bonds, covalent bonds, and metallic bonds.
    • 6.3: Covalent Lewis Structures: Electrons Shared
      Covalent bonds are formed when atoms share electrons. Lewis electron dot diagrams can be drawn to illustrate covalent bond formation. Double bonds or triple bonds between atoms may be necessary to properly illustrate the bonding in some molecules.
    • 6.4: Writing Lewis Structures for Covalent Compounds
      Lewis dot symbols provide a simple rationalization of why elements form compounds with the observed stoichiometries. A plot of the overall energy of a covalent bond as a function of internuclear distance is identical to a plot of an ionic pair because both result from attractive and repulsive forces between charged entities. In Lewis electron structures, we encounter bonding pairs, which are shared by two atoms, and lone pairs, which are not shared between atoms.
    • 6.5: Predicting the Shapes of Molecules
      The approximate shape of a molecule can be predicted from the number of electron groups and the number of surrounding atoms.
    • 6.6: Activity: Molecule Shapes
      Explore molecule shapes by building molecules in 3D! How does molecule shape change with different numbers of bonds and electron pairs? Find out by adding single, double or triple bonds and lone pairs to the central atom. Then, compare the model to real molecules!
    • 6.7: Naming Molecular Compounds
      Molecular compounds are inorganic compounds that take the form of discrete molecules. Examples include such familiar substances as water and carbon dioxide. These compounds are very different from ionic compounds like sodium chloride. Ionic compounds are formed when metal atoms lose one or more of their electrons to nonmetal atoms. The resulting cations and anions are electrostatically attracted to each other.
    • 6.8: Nomenclature Summary
      Brief overview of chemical nomenclature.

    • Was this article helpful?