Skip to main content
Chemistry LibreTexts

10.13: Solutions to Additional Exercises

  • Page ID
    182988
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    14-1

    C.

    xkdXZGiVM4VRpxjWbwg_X421ToWvEotLFJED7wzMopGlELRWwkeSTDuOOWjqTyQYK6_tnUueLRl0wJYZ_x9_9bIUp1QmrdK5OWmsltZKUjFhR-jq6HeEx4L3UmbhXLR5dhWHx6D4

    14-2

    (a) (b)

    E1ZxawW_mPfsqkU5c7dhti2p9QCUkmzlWIRFlQNFz4wTAPPqgAhBvcqVwyAV2bnAv27wB8rd94EhT_Tz3rNDfFGlDT-A-5nGiQwQmk95dfZKHUw06-yFMFhdT74mAsAo9lcbFlyGDOuMK0qbXA wg6EnHDiuQiDDK-EIzb-m1nI0YUQxbS3aegZoin9ixXzVE6EGYz1L6EGJ8SfWt62o7BkQI0MmqJiMZwaDedwd1yfUSHRqG90YgJAxAQ4TEPcvYERvVNZUMpngBasdDdNc7Zc-tzV2BFSMIiWdQ

    (c) (d)

    2n4Gobkf3RvwElOomvAikonKo_Ur4n42rXZP57p5dYuze4UGa1gDFdxjRavd5CHAMX1VKUTxYxmgtku-Yde-Xp2Wp62FODwwL3_AmObmzYi3hF3PhjiMtDjsrsK-VjwErRWwXKsxcf1qcUROdw TaLJvOzbL36a5Vt1pL8GdLyjjqeF5cH0Hpx3ri59KKn-GRwImZnvn8F_d9Zc-sfIDS5hKZnPmpc9rnK4n3g8KjKvqbrNSVC8Ok6bhRgO1t3nEuvgA0QLlAtOkyez2bCJMwT2Nn-v2z4Kjwl8xw

    (e)

    4guTMiUFuMRV8rUzuQlIzfQGVJXucTi5QCUNP_-4ojlKcdEmyl0ZV_tPgsR0xOTLPEzzfLattDGzKsZu0Jd5I17nN4oZLPqREqPvbPBhmbD3YePP5AQBOsQfNdoskAP6kEbkQBoZCZEM_tiE1g

    (f)

    XlroEiRSmQ4nDATk54e_FdiZSJ5zu08Rvss4me3AYC7zxhgIhKlbhz6crwU4ShSGtYg_GRiUF65ZESPq9Xq2OMSsufX0hE7ordxI8UzIkWfn8qTCXQSOhcV7KZzf6Yu8oeiwkhRu_elcisVlxA

    (g)

    R4Fqe5I70Q8WfMroblTjrqsW4OFEujKehCCjyHy7XsIeSzCS-zvF8NwAIuJIjwILdYmqq4J57urFMi638EU6gc1Jr6mqKv577j0TyqXQhTVHuenzcXj7mvD6yaaMO37srS0Vd4_4jNgfNwwfJQ

    (h)

    xlbpcuKgYgdXgmCUAhuILETEI3IdEy0uinwfZc2TVMBkfN3VDZAGFLXBRft7AbrdfbzX23Nwg3MDUN5iHzPXzYNEItnZhXXIBij5R42cRMv0A-gYE2BmNI266f_bwIRVh4acSTspIPLLVqKfCA

    14-3

    (a)
    LHF7TelAB3qBnOz_jNWHRVkPsZ43aE8Rkhrlj9hKBhgY7RvFrziT-_ngg6Wc4TGgEEql-D4HLNwJ_1BVl1p9CYSEeHI0xuzI-XPGmL2I4Rm5-JzWtoZtA7yDUGRxUvk71FZyx7qn9oj2B23tCQ

    (b)

    6-UZqfsGkWPfefIu5OejVpTHYVtOiGBo4TT3G0nEjExVZCoj-uBdUf8v578RdNQGA5X2n9fGEhK3srYdo8h7lqv-VbdKrutTBI9L1vnrI1KHQQ1NTufC9d4c3S22jDbhrwiP1jX2YwhMWhk_0g

    (c)

    anYV_x3a6xCRRGUkMcWUn4tipz2Od5fXYy5CmOoRlVN5WVh5GtfIaF8hSuyTQlPCeUXJ1Tmk4mCHdjVjxASt5qrXwfNAPsZvgc2e0ybtbXJzEia7zIQobJq5WlZlm9tpaIadVhMnB13orNqHWg

    (d)

    jgJpKXMWDQtN3ykRDCtJPhuzEF-u_yow8QYYad0GnFrzo7v9itdjdj5nG_UW69D6_bx2S5rsb57n_z82qqUdYN--I2JWe91WzLzC0ZdQ2usPLaNpPrG2BQhN2UTJT4AlsA4wNinpM7AYQI-_Iw

    14-4

    (a) rhKoy2RsqBImgFjloqCRmSkwF59nZPkekanTt6D6q5NtEUVHknNu9Ti8mrtDdMDr6SW0tBx1IuSGzrC8O0aO5cVqbgVkWZBgq8MEGEx6jtSU7e9v5AFjxdm6R56mveokgbhSqh-4e8Hc-G9Zug

    (b) E1gHigEnI50JHiPPJlwMo3r_mylBkE4QQtUzI_bVXggDKtzsk_JyiNec35U9h-73q7CHtz3dnErXLf4oDToVg9OusmfBIaLnzNOCtAe4Z5JAz3JTUq9LeENHDcMgTXoRg9W1lCpMOaLD-Usgfg

    (c)bYNDx_SmGFwP8LNiMyD7Rd77kAf_VWGD9usSm4J2pO-xa9JD7UC7UGnI_H3dd9qat4Czx6lRE97cdkEFfzuEeWw2vpnRpHoqhW-mMG6rPmGXkgf_gLHmb2_GbwNfIH3GwJDVf02xQzvxGmEXPA

    (d) d0_HnfXzH_YdElwVFH977R3oYBtlXQHR9EzuvgumZi3cM-x_EPDaPIUTzG0JlN82fmN3m-Bo4pg8vrRxJ99o1mENapOAuNSQhJOwvgegrBsf-J_wB7bggWybd4js7iuSiM3jglyaDbf1zFU7bw

    (e) jKCchBX_aIL3qKWvr_zCLyW2QFGfo47ohDP3J_Ln0y50x8tVO_Fr_kUclUxOXqXP1_YXa_M1BkLQlRoCzJqDfdSXF7hkGd1gN0EBvAclFJj1xOf5kIAWmWnDmg9jMRJkIE_5-ZOVtXPU4xF6JQ

    (f)lBZX7cOPdt7r_PuZg2fe8WMKBWoGb_4VF1wkcXKeu5MuoAWJghiJ_rySfA9js0CfQhFcED_e1kPAFAnY1lothuwDQuZ8tMt0EtnBBmI3Y2ffpflqGJ1snc6nPvwWuwW2CrFvTnOjsaXzB0HrJw

    (g) SfZfy4hjUM4YVdowGB7SuB5dothPjMEfT34Yd7-g_A0egswajj__IPj1k8QG5lR1r89Jc-N8q9o9bsroBypZgCJ1TBhp07EadaZxnrf_k5MNoAqnai9qxqq8506qvn7mSOLKufH50rkSJcATDA

    (h) O2E3_God8Akj1myASypi5uBZlFA0edhoGDYTvoAYTG4NrW1WY8sWwXHgRnmOTlgP86RENS6YWDCDZ_Vc1xy0a6izdZ8uHyDj93Z6iwYrW8pvXZ49PPwREl1Xfcs_rCmFGz4axdFDWqv_ortBmA

    (i)XqeV0f5XwMZc4kDLzMYmk2NDuNlFRuEIixIspat70Atu_GwQwVj1L6-oCGhnp7CY5prTDOJY85GfqSGpg2gzRL0xbulQzVKcS8u4gqp0io63d4khlusl1Jr4awrPEA9OAeWKb0nltFmBLcF1YQ

    (j)OEtn5tzcmGmexbeMVg6HXaNZpqakOp7qPANdyI0GJ_LRhyUYfCZCQGPYZMuBNPs5-GojF5rL-sexyBn_poxaBPOwqmTh76YKPJ8VFNLLgOaKqP8-6hAVzIgRY8W16Yt6zHyGoDVwrN-OmJmTYQ

    (k)rJ9mtnXFKFcUJ0LLfK4DcUCRMPr7iDZRr28mEA8ZkjGkWMNypgxv60HxW9trEW6sG34jFikJnoqxpj3PhjAaFKR2y8SSYIbga90NCdYfMKCbgwM79KWx9DQ8oFVcir6OyEedozFvnXi-0KDS0Q

    (l)eorFaIkhR8tAlfPEODOSW9VdDstzhtROSgvHekS5ItnXzvawesm8oGdpgwZ7NG8R1CeehT6rpAvM9591RdRi798u9Irfdm_W990E6X1Ro_AeCK0-kw7aoHrTYRC3DfPKN9Iytndi55C50k1m4Q

    (m)1uUawxnUaYnX4jfgCgVH0Jtyl5MYImGS39RLU1N3jdQQ9tToS3vsKRrw0DXqb10pODX_Pne2yLnRQKM89bBt60GRBDfKEgJruIDU65d2iAE783RU5ySCqzJYZoLIYUqgyyNMtiU5Hd0x1prQ8Q

    (n)LIesg6eXV8-gaRGuGATHlYF_1RMkRlkvZFNcB-1ReUXn7TaRGw8o2UbuFjS3YbN_rZWg_WjpHxtleXRNvD-AvpxlayIXkv5h6mywsYH5tVt58yA9LVwNlC_fy-tAnsdF832NhuB_1SBrEcWQAg

    (o)ignMVxfGnw50lQ_QHNDITKdne0QnU6WeOXwofYWuH5__cvn6UPT83cje8XFx9XwFgTHLeOSOAnVI3v4I33JIelGvVtXlLwM5B2-8tp0_MgqOAc1Tm14if4cfPp7g8SazaSviAAapdyhjE-6q-w

    (p)iNM-a388qFPqWcE0iu881xS7F3sFiV9KqWs-XRe2Y8qB__vgqvJGn-TNGnzfJHBiEuNtFmcxqxhdTEIKHCnsIWuWfwbe4Tm-K9V3AgzuAGHii-m2pVpPKW8SMbxb9d7hDtcSRSJLZUa3dByE-Q

    14-5

    (a) txh2O18-AIw5uKeLdM1tc8h_NL9sz8ISnjZg6bFe-b8kffysOi6q0PJ2vQXuD8SaQ8iNFNH1z3bJRmGjcM7BoGxSXtvnd1BcoXiBB8ufoH6yxj6nqB0eFhpBW7a0alhop6MOGsfiJuvPFaOm6Q

    (b)

    RGlHkvXn2APlnhTrklQ3hviFwhA2gy53zFGQHTwmQXcaKM15akrx2BLJm29l5pvRwi0qsh7ubtfOIEnBQ0loFItVhSShJdyWn06IgDh8ZV-ymZh327shCbPbujQ_l1L4yw32_MtjfeSdwixsFw

    (c)

    pwmMkt-aoslvez-tTn_MhI4picbA5Tf9e-akGr5M5w2n7U2Z9K8St5Wh1yyusYMPqvCYhjVdFDEfLCtLd0lOzhSTi0dYMExesVkwRTP_-mUma72bUNJwcn_hs2XJAIwO_cjyBzoJPPTJWOnUkA

    (d)5RAQw-TOWb00NbcDCmwfEECLj3LVf162PphugVId5gCgthWdpVFj2MmuGltu8XS2uaKir8uZYCa7a7hR5GUMvbBIp77g2Ar-yuKkt0qY0Dm0CJBpyX2MRTYvXriGwXAXEHxlkMlF0F8wlA6k4A

    14-6

    (a)d0wVTIAw-_5NbFgGbNGySfxoVgETM96XTeFY71Ker9w-Lbxmhxo-9W2HXAqr9Kph9N_DOX05PBtc7I08prv9vPUJTago5YRh9s4544Fy9gBkaIQ7PrAX4-upgP0ecFhVeo2t3QbYKEC1VJfEvw (b)jFWESIX3Cb38dclVnbLICm0G_gMjVXTekfQrv-EsVeSZ-ApxJQs9mxeOz7QCQu6SiPrNIolPbc8sVnZCnPax6Hm1p6v-U8_dn9XxGTOSS39J19i3N6qACztm42IgyxDnmThIxFVvas8kTaikeg (c)_8BLW6QySZQ8ggL_j2qwBAv40l_1OcRsPP8tFaLb1S4tFmHg6H4Qf3elCieGTYKnPofUAqboR7_8kbESCcipQ4XYw9re7WieAuFe0h9nFplg92PnBLKpmjGBH2Bw1AgAJr7QTQ1RG4JNughSuA

    (d)rJ9mtnXFKFcUJ0LLfK4DcUCRMPr7iDZRr28mEA8ZkjGkWMNypgxv60HxW9trEW6sG34jFikJnoqxpj3PhjAaFKR2y8SSYIbga90NCdYfMKCbgwM79KWx9DQ8oFVcir6OyEedozFvnXi-0KDS0Q (e)rJ9mtnXFKFcUJ0LLfK4DcUCRMPr7iDZRr28mEA8ZkjGkWMNypgxv60HxW9trEW6sG34jFikJnoqxpj3PhjAaFKR2y8SSYIbga90NCdYfMKCbgwM79KWx9DQ8oFVcir6OyEedozFvnXi-0KDS0Q (f)rJ9mtnXFKFcUJ0LLfK4DcUCRMPr7iDZRr28mEA8ZkjGkWMNypgxv60HxW9trEW6sG34jFikJnoqxpj3PhjAaFKR2y8SSYIbga90NCdYfMKCbgwM79KWx9DQ8oFVcir6OyEedozFvnXi-0KDS0Q

    14-7

    (a) gzEucA5EZUcoqxe6YFbGmcf0gGlp2euBHuahyKfXgqrBSjV6s_QRj5gLIz8kl8bdHAX83ykxBPIsDo5bzoJNEN1QBeGbkRSNbualJNZdC-KJ5dCxScgY7k_gi-XPRxX02jq_jbYJfKfmNkKqOg

    (b) 7o4eyI3dzdc4Cl7YBbcNzAoM469WKkrBskZ-s5RCf7YMEwL6GFRqgStPt25uMTTlH8Yj8I-cnw3YLLbjzR8vtBM2W4uy4ueLhGzT8Yp34VFvSxD0O0TmQDRnRye10IQL881UA5vhqRykC9Ci3A

    (c) qwF3wyiXhY-goEZTIcWwg1Wv9-xlRgcPsx0L2yia4L-WNhfuW9rQN5NRHcTblA77nUXKbRV13SDVx0h7LSqxWNr0Ds9MIZgP_I2xOYMRwuRTDsb9INj9nl9QrFhXvJ6odPZpx3lczcLIfjF6Ww

    (d)9EPOvnt5a3CJXIEwEVlDdFRkIPWbgyWT9A_LwQejPsfo7I6MLrjCMOrzXmQujg5Gs-EonueJkew1fX2NGnfFdd5G02CiIohNlYjTdWqxIacJrsCR3MT3oKtauwaGk7E853RUXgjC4TQaC5PAjA

    (e) OIAXBnmRp3a-wQPgmHqGA1PC2xH-GzYevRCyj63OKMmDBCOM6ILT-KqpOoUrDqcbayMreCGgfa6wgs_fIsS-3TSMwqtLnHhgm7HLFxe9MyZ6tCt2UZ-uMe96SnVqcnWwf52VEJgQpJj71SCSIQ

    14-8

    (a)zTEi20xpELHqX6Jw1Zi5G5CxosWU_P_IUqwgCiN3f2D0YQC1qeDqzGDIZsw-u14eozehJ8VQhmQhie0SpFHKcboPxlH2djDhfbWLjiWfjNJOwRIYdNC-OZ7KyKh3JYf9UG_eTVWlJDIWDXKHTA

    (b)Qhs4F0oMtQG97vuqQRzS77ViUWbGuZf79IrX5jW0bu3lwDThl2wzlvTCNtosqIT14XNvg9qhucMKmph01BDZE-QXYhovKd6Hy9U_maXHY_DxZM2lt_-NqrQ9YXyyfhrPVI1n0Um9Rr1bvfiP4A

    (c) Tr_4roqaEu7Y9tPe_tfsdYsS_K2k7dtHD01B1yHUKe8-4U-Lvl6KWQ_Vl7WYQD2EDX3g94Aj_8Bqw7x4MFNs0bL7jEuidn3vpY392JYdx6IqQT0LZREvs_y10zYkHk8Zq4c9cS0_M-a9oojUPA

    14-9

    (a)_i0h0YHIql5ibGCmZtlxzkmvP-2XcKDSKUDn6WVZXj7Mf7-miPxhykRcjrYtWAfZJN9ntfeOyBPuY5Rw_j8j6EVL7JZ_RKx8gwST90TD3L6FEuAqzJBcmLL7A_pwYn--NCMv5huid60W6-mzQQ

    (b) d4Dah2tl8JOYsChrOzmGFiAotRz8kxqmWTKja1Zn6HlQgL7XxP-dnR1mP6NLqqLckikL0oTW1pIdgE-fq_4LvAfIw9KNc7wnzi1zMvCCCGe1hVN0LlPfR3uakrlD1CgmCIwH2clSNGwyU3XnQg

    14-10

    (a)ZoXeoWmOF50QFT00uq85OklpLtQG6mjHaEERj5HaA2JxpIha5sLnWBJCfCwWWz7JDhSoBPEVuTHILSrhx00PAZBXuoP7IpC_0WPn-FOQtn-fkliQnCZXyxB-2zA8tGRwOyzw7pGKqxYgDfMS9A (b)1rn0IkBO8bi4RALwKDoj_R-pc-EwbLrcbk8oeRERluh--7Viy3K7js1aCCRrKvPp75xelBtvEG3E2-npnEiqr4ZEkHxDKJNSDWB56lWQhNwbJbc63xHi0wPvRCfD7g7-Jox86S3ysfNOkfIjXA (c)mev32VSPkc-bzrXLTmnRW2Cfd07vtYAJrjUJTJUud3Mrl_v97XsrNu_kJNYIyHQ2MWU11nXkAb3QPA8uUseoq_lCicfb_PMovlWrIg1YfMjoxMtrxSH6JwubQWL34J56YtF51D_hihOILSEWsA

    (d)3JAjT_-LZqvVXxZ1OqnyJfW4QKtlJtOZQ3xYzO-6WjVU_CtVO3rKVHBhGBkkbVjD1tAxUXujzD2Iin-2jtonnwNaeOTBCoomUL7CzpUFo97fWj7Tmtyau8ZsNH9cmtuvwulv6AoDgTpsiB7oFQ (e)GKa2qsnVnlGIMA_zPtz1_yzmM6BUrJE7vLdYahzqQoB7CzP7ke4D8t0A8R3xQ4WpLYI9wrFXG8U3slkTE_Z9k4dP7gAa4Q-2e39qnvaxzsyYCcWovYpUu4Ok7kP_3LWwsG9Ef7BAgmm7KaEldA (f)CNh1rJIwTwteVUHr9YwcPCVflmRsm_T_RIanb8zN3Gs2XvK0Kthz64vTnBsVKvgBBQMDZ7zf27oJTkaxGPFkKWuRjlWcYpudke5kBIynRoTg6r7jA_-PH_OBo9bK5TRthcR_l5IFd3P4xnvFDQ

    14-11

    (a) QUbjOx5q91FhNDMhja4cRSs59C_3623LLv_ExqXhgmo-0zOKx07FQFSbOFYqOVpIf9Jxyc1UfMuQPTNJjRRNqrKtiB5E8KaRgPf-Qt56_lnnj-8v0CTXjr5iVAppAFu41IB8-XrYAB3FYvOl2w

    (b) vxwip8a7DRRSkO30SuVQJeytswKTFuxjWDpCSgcNwUTjhWjPrj2WCxc_UEdCWMLeRGb6W8vUCbu3PQDOOdJ9Z76tkOwnsRYuGJ1QeV5SCKpoB7A6wqyakwIMhNTkNmsuJc8epd-S1BuyC4_XwQ

    (c)D_Yihj8m4KbtVYPeCO6M2zeVLPwKne-rHDHDAS3dbXwIEmJvocXimaKZ7V4dgCmNDpqPY4nAn3py4xyFELH-ey4za8PgGu6FT1u-lqVVTmAQrrGBZzjG5_yxFssUtbk5l3aPPLNqJ5t7YM0Nzw

    (d) QerOnbi_gMKFIa9XTNlXWW0o8kV2bb84SnYYFN2cBV30a5_OQoq9vo-q-F0CP8xelOIcDTDG2ayFjWZDt_uSHB_iERxARBO73w35mHVqDnPaC8vFGJuPwO3eEcAFbwI5l_NdHgymTfFU0bcfeA

    (e) w0Nv__Cif-jNqqis9jGD7jpL4ycguWqI5DfxX_U7OGOZlaV1cFEYobfvdNjzhLQMrRcsjXub_11qr8epz91ji4x-nvmLfb3c1Qbc1KAZH7p1mxxqKNLdHAuFSrIVN6I9zcmb_PkdhCzv1dj5vA

    (f) GGWvsxqoqVGNp3kQxltFrai4RVMUXz2XpFf9xpFaiNUIzZ5vMIMe96_ZLTyy1ylCMYqiN8lqWDtJe3ADqqpYvoPoUwXYk_Fa1GWdW2JozE03e-50n4C87P7AfhxmlTYne7qtKpQAXuOcd5fEYw

    (g) 94ujNxjkBZGitP0SQtREenIzlylyYO2T_1mEUeNzxK6IrnC8yjI1asfDKGL8DuxghIiXoLVz0H4__EuKJw3qh0XSkkGrjEy0MMU1aefGxRMF6fq_JVyIf-WBaSmExb3F8_GARsPHtNzakrN19g

    (h) YjkhqtU2XPfrRbg1sxdBHL7PvoHX3dI8am0XmoKNWjvAQ5eqmgpJU8sWquzXUjxMfHVl9d52alNUORdjVsoQTUbYnIvpfuTBmKwk0uvkGZmdK3F3PaP29uS8QU68uY8WKg7Xv6B9QFaBYY5-Nw

    14-12

    (a) We can use potassium permanganate solution to distinguish between 2-propanol and 2-methyl-2-propanol. In acidic condition, KMnO4 oxidizes 2-propanol into acetone which forms the MnO2 brown precipitate and vanishes KMnO4 purple. As tertiary alcohol cannot be oxidized, 2-methyl-2-propanol remains purple.

    l1IsQiJOeAQwveNQx2hfZ9w-xYRHYVJRv3yEnT-mEZuX4jKjG948NhxXOHKv_l1aYE-yYFU08voqAWI3LDGY9fnM-nTHTbfqh7agEqyG68A76TfjM-yRIAsb3vidv-Hy-ceqqFtLek1uAnaqyg

    (b) 1-propanol and 2-propanol first need to be oxidized into propanal and acetone respectively. SwmQM12rsIq2h0KhXmfiUls4VYzbkcnddvCqwpmXeKT-7q1gbKSJd-BjitdF1AQp70chejTp8lTHoEhKeavmvMXpIY57yAPBIA_GMgGUzwlNKGfi4V8b4xivMooXwM-OmOnB44fLhGd-06QbEg

    Note: we use pyridinium chlorochromate (PCC) in methylene chloride CH2Cl2 to produce aldehyde without further oxidation.

    Fehling’s test then can be used to determine the presence of an aldehyde. Propanal reacts with Fehling’s reagent (Cu2+ in basic solution), forming a brick-red precipitate Cu2O, while acetone cannot react to Fehling’s solution, remaining a deep transparent blue color.

    SH_xQ4OyaypUjd98VebsVjqeeBTr7ykwXeENFW0jUPapbBkM8WHblYowmty2YBXNf436_f_6AD17lJKhswNQrbYNmGQoOJxEhq1PUhXnkxjw50xZTUbO2tznfufdxsKf78Os26fCysqqNVfywQ

    (c) We can use Bromine test to distinguished between cyclopentanol and cyclopentene. Bromine reacts rapidly with cyclopentene, in which the reddish brown color disappears quickly without forming HBr gas bubble. Cyclopentanol does not react with bromine.

    l8nRkR2yqeIaJIN-rmz1MM-fWwEHpQucRK6Gg-q-fT5rnITU9_FTx99RMbjntgRIURDHM_ee9FasoMWtB6Tf90zDqDpu3SFkptJTZN9RUsKpCLckOW5BnRoq53dAwVl0pVxWmiXQ2xJaiBceTw

    (d) Besides KMnO4, K2Cr2O7 in acidic condition is another oxidizing agent that can be used to distinguish between cyclopentanol and cyclopentanone. Acidified K2Cr2O7 oxidizes cyclopentanol into cyclopentanone. Evidence for the reaction is the orange solution (Cr2O72-) turns green solution (Cr3+).
    1-cyclopentylethanone cannot be oxidized, remaining the orange solution.

    zp_MRI-LjB8fzfeaSEM0qClQoraXika_pR-HXI4Mwaa_Mro8TUeNaSnSiGclUdBm69kd5T21606U6FvMFkxDZdzQireZopXkp2cWwH1hKcHlKJ_L0ss5GOID4b6PWUfTebWz5MqU50yt_dIscA

    (e) Sodium metal can be used to distinguish between cyclopentanone and 1-methylcyclopentanol. 1-methylcyclopentanol reacts with Na, forming sodium 1-methylcyclopentanolate and releasing H2 bubbles. Cyclopentanone does not react with sodium metal.

    kVeGEeUaAR5mW9qSLM4KB6FCrFHMwD9hFFIz7ounRXyzlkTYoWbHAkKt57KvfYmJLgHyxLTKe_CJ3mwsLSfyGwM9ZfQc_zWYs9Iil2ms8fUCSuwfOE3JHiUrkiDhYx8s9JusyozJf2kEZVReWg

    14-13

    (a)

    8cD8lK-W_Tn2wF7RXMuw9a-Gmg6jGOSACHFnfAswIAG2317D7ywjivP1CAssbzEtGTL9rPusyjv0jQ4dTp7W5Juxc0k-JbJakWZsVAoYuk464FkwWlULYfPD2H6whzD9b65t0ZK4ydoUX72Bow

    (b)

    yeLp23nbCRawDW84UxWs4ld9qNcPs48ARSPYzpBcDgtCEFXRAMX6RHHmPsMNfmr5KqfpFoL6vZ41HnZ-fCTnFfx_LdSu8dnIDazbGfbILq1DyS_cNsErLSk9eiohUAIQxUiAl8qK_sOFQZZvgA

    (c)

    VhY-iIEWmql161NRvy3w6n28jCsLVMO3as4nQhPhqiPvbpcreVFldBMOl6pkdYnRjY4iOlqqjzDMmSimURqrT-UqKYAo8GJoSqBw6xCxULrVEic9Pwp2XMls7PqldDBbemlYIw8JrhnMno6Uig

    14-14

    MFOL6xcCbzPfrMoVRuZEgwnLrqOT8LORVECYuKZHZjY2d_H64lS6Kg8b0V3p5NStTBCYtNwFN7AD5Edyz_oy0-Ofw582DFVBU_FRtNI3LfpLfwTSlXc6wGpImEdS7lLNIT3cxMHV_C2iGkG25Q

    14-15

    0oR_c-2gv9gjj7ZwqTtil3buBEpbOjmnu0ixhAkRYt4a4cHKpcNAISPcZ22PBOfGk4jCMPFngKWaXEPR5ZQ144-goxF4pz8GEshbWgDTcFTwwvahmUNHbVIbs3U2z9e0D0YHt_ji-z4q7UxyDA

    14-16

    (a)

    GVNCf6fBmjB0iSJBpbOQjCLqH_NOgEXOIwEsM4T5hW70ThH-t-wU5Ck1TXav1ANyxItlOhYv17WIcg7WK21WY7Y3sJjZfXR2PMiop7lI7wzAaV9CmrO9Uq2YvMaxOQPedzeUY3r-c6fgzx02Xg

    (b)

    QmeNvwVdsMH1nfYnKnvnxll796k-_nGne2SiKzC7fz3vCCMlWuto-GqtBgzR43Hygi0vhvt0SqrWgokUl605Da5AixPx9Pof3DogrlC8fWPluCrIuCoRCrCdH07yMWQ3dLAc4_OrWNXYRFYGEQ

    (c) bp0CHmA6Nf8Hq6QXMMpQVXT516CYbEodaw1MG5A0_x4_hdsi_huH8QkD4hArUnTaWxq74Q4YQm86Q16TPkMqY1CmB_jhhdw9iaZZ0H647qEkpl-wfFQi-7C5vejkICyEYXH3gQDkA7dHCyZNnw

    (d)

    WjpQWsFi50NI2nuff-eJwU76tCQ5iH4vJ6aEfzn_x4FunRGIHuHCcZanRcDFXNjlCId3hDYAwJPKxnYUUrx7QKIT2OkdAeyB6Cr8gXWMN67Q8gam42Q0-z10vFzlWJpsX4fKFOiFab1bCTWAeA

    (e)

    Y6xyRB8lsMkzrXWwsaMXpNddCtRPRk-O54FVr1yz0u09SL-SJVY21xSPjhGPdKnHxpVAp99pDX5u2PSkNo4ZkKRc-1-2sK0A3XMePRs5lBzaTYq3O94SE0Ly8vx-zaYbr0Xf13NeFWfZ1X9WQw

    (f)

    sMRcQXN_Yomv1DKjiDbxvUKpDAvIdEWC1JJe_8Y2hJpR3MV2XYMCmcxj4pUgNjAUXIuxW-QYc6eOGCnpx_c5KqmW0IhDx5OLiZlE7mKnuZQM1UqSKmI5aW5bWKnsqzWZxAeIjaqhxKuQBkOVBQ

    (g)

    WqT2AnLhOMCEjuwXO0-e0BMD6S0Asze9qauxviUiYnLrHTthINXRKC70bkbIhy4Fho-J1Ztc17lqvuEASEe33LUl2RWkpSy1SiCN8GdATov4JJXOWxUlRbr6fnToL3ZVsiorZO-N_BvN8r9jUg

    (h)

    KjjN-gpiocJFH66hGKM1peDq3TNZn6jitomNP-u-wpXZssbHU2x4w4yfqM_sgPiqXqsAHEaMv8_UPlMddMe1hYxNf5Qd-Qxz90ADhm9OUYhUnoKC0dEbBDM9YCAP11FpwlPfPXiIP6XpJfZ1ug

    14-17

    _fJ1kXDLeof3DMkaEVRHY_i-5JTJNUr14U5JcawOZmFKaWb_oJE4qOSeggMAvCezOKB4qPfjyffmppKUY9W_urR1iuMoY7cEDRdFOA_N8a3F08uQ21Un7kuCC0Vm-VhPz0oW8j1oDVnMDIHDzA

    14-18

    a) Alcohol functional group typically has pKa of 16 while the pKa of a terminal alkyne is usually about 25. The strong base NaNH2 would deprotonate the stronger acid, which in this case is the terminal alkyne. The resulting alkoxide then react with the alkyl halide CH3CH2Cl

    b)

    YzBT8Q1gKkTsdQYCM61UvMpbtn7_FRzLNPveRzIItPGfZY1TWGLW5zR5wj1LjPcY0u-jTSBGzip4yZUkr5y1wIsF5iJgCK5tCL8DO6ih_rjVYgvxiSjIccKJLqfHgjfe-dNoiyG8FPzSXxU_OA

    14-19

    IZ4zqhntQbqUnQGEvOBquUvH5v_OJ-0F1qEiVD3PBBckgBmdRJ8_vR-oAJ-j8zsRjybegkVD4XmaeGdHaRF39TM0-6_KA8jMHaiDU2bpbWhXbz4il4jsoxPqLkPDeWZWmmSQJQ5rxTXcCjv0uw

    14-20

    Williamson ether synthesis is an SN2 reaction, which favors strong nucleophile and a primary substrate for back-side attack. Since a tertiary alcohol is given, the resulting alkyl halide is also tertiary, which is sterically hindered for SN2 reaction to occur. KvwhH_cMQo9T3xIdmiNhAMP6tcByJpbU9TbGfbPi13INWy_l8cc0Yjya-rE3V4nbpAcpG7_vdpeq18TW_HnkUInOcnn7V1LAB6Kic-zxdu3dFz9yi63VNFgAONmjJJe69YOdCefjmMRqihCzLA

    The alkoxide then would function as a base, and an elimination reaction would happen instead of SN2 reaction.

    An alternative synthesis that is more likely to occur involving the reaction between a tertiary alkoxide and a primary alkyl halide: x2sE2yDBW58taTHZThHyiVKV5xEisUsQJnFet6jkL4tTaygwMGR984Ldcp4AQEf15C0MmSJLlfHuZjQNsYAkX-hOlm01xmPGmPloYnZQ6bUYeKS_vzOUZMtPu7aECXBWGLqt6DEF6ZJ3MKgbVA

    dEZgOhIjGvr0StaPtIwExMwJyW6KJzEVjSUqRuLR62z8lIrtUi2xBDe0_2PPImEe1O1fVXDNdFDyyJ1T0N5rIuRPoQGoHhH_6PDrKb4sCFpGD2caz9iwNQZjefMkFy56lPeFK5YIQ5451xj58w


    10.13: Solutions to Additional Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?