Skip to main content
Chemistry LibreTexts

7.12: Problems

  • Page ID
    401381
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1. Write equilibrium constant expressions for the following reactions. What is the value for each reaction’s equilibrium constant?

    (a) \(\mathrm{NH}_{3}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \rightleftharpoons \mathrm{N} \mathrm{H}_{4}^{+}(a q)\)

    (b) \(\operatorname{PbI}_{2}(s)+\mathrm{S}^{2-}(a q) \rightleftharpoons \operatorname{PbS}(s)+2 \mathrm{I}^{-}(a q)\)

    (c) \(\operatorname{CdY}^{2-}(a q)+4 \mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{Cd}(\mathrm{CN})_{4}^{2-}(a q)+\mathrm{Y}^{4-}(a q)\); note: Y is the shorthand symbol for EDTA

    (d) \(\mathrm{AgCl}(s)+2 \mathrm{NH}_{3}(a q)\rightleftharpoons\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}(a q)+\mathrm{Cl}^{-}(a q)\)

    (e) \(\mathrm{BaCO}_{3}(s)+2 \mathrm{H}_{3} \mathrm{O}^{+}(a q)\rightleftharpoons \mathrm{Ba}^{2+}(a q)+\mathrm{H}_{2} \mathrm{CO}_{3}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)\)

    2. Use a ladder diagram to explain why the first reaction is favorable and why the second reaction is unfavorable.

    \[\mathrm{H}_{3} \mathrm{PO}_{4}(a q)+\mathrm{F}^{-}(a q)\rightleftharpoons\mathrm{HF}(a q)+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q) \nonumber\]

    \[\mathrm{H}_{3} \mathrm{PO}_{4}(a q)+2 \mathrm{F}^{-}(a q)\rightleftharpoons2 \mathrm{HF}(a q)+\mathrm{HPO}_{4}^{2-}(a q) \nonumber\]

    Determine the equilibrium constant for these reactions and verify that they are consistent with your ladder diagram.

    3. Calculate the potential for the following redox reaction for a solution in which [Fe3+] = 0.050 M, [Fe2+] = 0.030 M, [Sn2+] = 0.015 M and [Sn4+] = 0.020 M.

    \[2 \mathrm{Fe}^{3+}(a q)+\mathrm{Sn}^{2+}(a q)\rightleftharpoons\mathrm{Sn}^{4+}(a q)+2 \mathrm{Fe}^{2+}(a q) \nonumber\]

    4. Calculate the standard state potential and the equilibrium constant for each of the following redox reactions. Assume that [H3O+] is 1.0 M for an acidic solution and that [OH] is 1.0 M for a basic solution. Note that these reactions are not balanced. Reactions (a) and (b) are in acidic solution; reaction (c) is in a basic solution.

    (a) \(\mathrm{MnO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{SO}_{3}(a q)\rightleftharpoons \mathrm{Mn}^{2+}(a q)+\mathrm{SO}_{4}^{2-}(a q)\)

    (b) \(\mathrm{IO}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) \rightleftharpoons \mathrm{I}_{2}(a q)\)

    (c) \(\mathrm{ClO}^{-}(a q)+\mathrm{I}^{-}(a q) \rightleftharpoons \mathrm{IO}_{3}^{-}(a q)+\mathrm{Cl}^{-}(a q)\)

    5. One analytical method for determining the concentration of sulfur is to oxidize it to \(\text{SO}_4^{2-}\) and then precipitate it as BaSO4 by adding BaCl2. The mass of the resulting precipitate is proportional to the amount of sulfur in the original sample. The accuracy of this method depends on the solubility of BaSO4, the reaction for which is shown here.

    \[\mathrm{BaSO}_{4}(s) \rightleftharpoons \mathrm{Ba}^{2+}(a q)+\mathrm{SO}_{4}^{2-}(a q) \nonumber\]

    For each of the following, predict the affect on the solubility of BaSO4: (a) decreasing the solution’s pH; (b) adding more BaCl2; and (c) increasing the solution’s volume by adding H2O.

    6. Write a charge balance equation and one or more mass balance equations for the following solutions.

    (a) 0.10 M NaCl

    (b) 0.10 M HCl

    (c) 0.10 M HF

    (d) 0.10 M NaH2PO4

    (e) MgCO3 (saturated solution)

    (f) 0.10 M \(\text{Ag(CN)}_2^-\) (prepared using AgNO3 and KCN)

    (g) 0.10 M HCl and 0.050 M NaNO2

    7. Use the systematic approach to equilibrium problems to calculate the pH of the following solutions. Be sure to state and justify any assumptions you make in solving the problems.

    (a) 0.050 M HClO4

    (b) \(1.00 \times 10^{-7}\) M HCl

    (c) 0.025 M HClO

    (d) 0.010 M HCOOH

    (e) 0.050 M Ba(OH)2

    (f) 0.010 M C5H5N

    8. Construct ladder diagrams for the following diprotic weak acids (H2A) and estimate the pH of 0.10 M solutions of H2A, NaHA, and Na2A.

    (a) maleic acid

    (b) malonic acid

    (c) succinic acid

    9. Use the systematic approach to solving equilibrium problems to calculate the pH of (a) malonic acid, H2A; (b) sodium hydrogenmalonate, NaHA; and (c) sodium malonate, Na2A. Be sure to state and justify any assumptions you make in solving the problems.

    10. Ignoring activity effects, calculate the molar solubility of Hg2Br2 in the following solutions. Be sure to state and justify any assumption you make in solving the problems.

    (a) a saturated solution of Hg2Br2

    (b) 0.025 M Hg2(NO3)2 saturated with Hg2Br2

    (c) 0.050 M NaBr saturated with Hg2Br2

    11. The solubility of CaF2 is controlled by the following two reactions

    \[\mathrm{CaF}_{2}(s) \rightleftharpoons \mathrm{Ca}^{2+}(a q)+2 \mathrm{F}^{-}(a q) \nonumber\]

    \[\mathrm{HF}(a q)+\mathrm{H}_{2} \mathrm{O}(l)\rightleftharpoons\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q) \nonumber\]

    Calculate the molar solubility of CaF2 in a solution that is buffered to a pH of 7.00. Use a ladder diagram to help simplify the calculations. How would your approach to this problem change if the pH is buffered to 2.00? What is the solubility of CaF2 at this pH? Be sure to state and justify any assumptions you make in solving the problems.

    12. Calculate the molar solubility of Mg(OH)2 in a solution buffered to a pH of 7.00. How does this compare to its solubility in unbuffered deionized water with an initial pH of 7.00? Be sure to state and justify any assumptions you make in solving the problem.

    13. Calculate the solubility of Ag3PO4 in a solution buffered to a pH of 9.00. Be sure to state and justify any assumptions you make in solving the problem.

    14. Determine the equilibrium composition of saturated solution of AgCl. Assume that the solubility of AgCl is influenced by the following reactions

    \[\mathrm{AgCl}(s) \rightleftharpoons \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \nonumber\]

    \[\operatorname{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightleftharpoons \operatorname{AgCl}(a q) \nonumber\]

    \[\operatorname{AgCl}(a q)+\mathrm{Cl}^{-}(a q) \rightleftharpoons \operatorname{AgCl}_{2}^-(a q) \nonumber\]

    Be sure to state and justify any assumptions you make in solving the problem.

    15. Calculate the ionic strength of the following solutions

    (a) 0.050 M NaCl

    (b) 0.025 M CuCl2

    (c) 0.10 M Na2SO4

    16. Repeat the calculations in Problem 10, this time correcting for the effect of ionic strength. Be sure to state and justify any assumptions you make in solving the problems.

    17. Over what pH range do you expect Ca3(PO4)2 to have its minimum solubility?

    18. Construct ladder diagrams for the following systems, each of which consists of two or three equilibrium reactions. Using your ladder diagrams, identify all reactions that are likely to occur in each system?

    (a) HF and H3PO4

    (b) \(\text{Ag(CN)}_2^-\), \(\text{Ni(CN)}_4^{2-}\), and \(\text{Fe(CN)}_6^{3-}\)

    (c) \(\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}\) and Fe3+/Fe2+

    19. Calculate the pH of the following acid–base buffers. Be sure to state and justify any assumptions you make in solving the problems.

    (a) 100.0 mL of 0.025 M formic acid and 0.015 M sodium formate

    (b) 50.00 mL of 0.12 M NH3 and 3.50 mL of 1.0 M HCl

    (c) 5.00 g of Na2CO3 and 5.00 g of NaHCO3 diluted to 0.100 L

    20. Calculate the pH of the buffers in Problem 19 after adding 5.0 mL of 0.10 M HCl. Be sure to state and justify any assumptions you make in solving the problems.

    21. Calculate the pH of the buffers in Problem 19 after adding 5.0 mL of 0.10 M NaOH. Be sure to state and justify any assumptions you make in solving the problems.

    22. Consider the following hypothetical complexation reaction between a metal, M, and a ligand, L

    \[\mathrm{M}(a q)+\mathrm{L}(a q) \rightleftharpoons \mathrm{ML}(a q) \nonumber\]

    for which the formation constant is \(1.5 \times 10^8\). (a) Derive an equation similar to the Henderson–Hasselbalch equation that relates pM to the concentrations of L and ML. (b) What is the pM for a solution that contains 0.010 mol of M and 0.020 mol of L? (c) What is pM if you add 0.002 mol of M to this solution? Be sure to state and justify any assumptions you make in solving the problem.

    23. A redox buffer contains an oxidizing agent and its conjugate reducing agent. Calculate the potential of a solution that contains 0.010 mol of Fe3+ and 0.015 mol of Fe2+. What is the potential if you add sufficient oxidizing agent to convert 0.002 mol of Fe2+ to Fe3+? Be sure to state and justify any assumptions you make in solving the problem.

    24. Use either Excel or R to solve the following problems. For these problems, make no simplifying assumptions.

    (a) the solubility of CaF2 in deionized water

    (b) the solubility of AgCl in deionized water

    (c) the pH of 0.10 M fumaric acid

    25. Derive equation 6.10.1 for the rigorous solution to the pH of 0.1 M HF.


    This page titled 7.12: Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.