Skip to main content
Chemistry LibreTexts

5: Nuclear Chemistry

  • Page ID
    235939
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    • 5.1: Radioactivity
      Atoms are composed of subatomic particles—protons, neutrons, and electrons. Protons and neutrons are located in the nucleus and provide most of the mass of the atom, while electrons circle the nucleus in shells and subshells and account for an atom’s size.  There are three main forms of radioactive emissions and are alpha particles, beta particles, and gamma rays.
    • 5.2: Nuclear Bombardment Reactions
    • 5.3: Half-Life
      Natural radioactive processes are characterized by a half-life, the time it takes for half of the material to decay radioactively. The amount of material left over after a certain number of half-lives can be easily calculated.
    • 5.4: Units of Radioactivity
      Radioactivity can be expressed in a variety of units, including rems, rads, and curies.
    • 5.5: Uses of Radioactive Isotopes
      Radioactivity has several practical applications, including tracers, medical applications, dating once-living objects, and the preservation of food.
    • 5.6: Nuclear Energy
      Nuclear energy comes from tiny mass changes in nuclei as radioactive processes occur. In fission, large nuclei break apart and release energy; in fusion, small nuclei merge together and release energy.


    5: Nuclear Chemistry is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?