Skip to main content
Chemistry LibreTexts

12.9: Chain Reactions

  • Page ID
    339762
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A large number of reactions proceed through a series of steps that can collectively be classified as a chain reaction. The reactions contain steps that can be classified as

    • initiation step – a step that creates the intermediates from stable species
    • propagation step – a step that consumes an intermediate, but creates a new one
    • termination step – a step that consumes intermediates without creating new ones

    These types of reactions are very common when the intermediates involved are radicals. An example, is the reaction

    \[H_2 + Br_2 \rightarrow 2HBr \nonumber \]

    The observed rate law for this reaction is

    \[ \text{rate} = \dfrac{k [H_2][Br_2]^{3/2}}{[Br_2] + k'[HBr]} \label{exp} \]

    A proposed mechanism is

    \[Br_2 \ce{<=>[k_1][k_{-1}]} 2Br^\cdot \label{step1} \]

    \[ 2Br^\cdot + H_2 \ce{<=>[k_2][k_{-2}]} HBr + H^\cdot \label{step2} \]

    \[ H^\cdot + Br_2 \xrightarrow{k_3} HBr + Br^\cdot \label{step3} \]

    Based on this mechanism, the rate of change of concentrations for the intermediates (\(H^\cdot\) and \(Br^\cdot\)) can be written, and the steady state approximation applied.

    \[\dfrac{d[H^\cdot]}{dt} = k_2[Br^\cdot][H_2] - k_{-2}[HBr][H^\cdot] - k_3[H^\cdot][Br_2] =0 \nonumber \]

    \[\dfrac{d[Br^\cdot]}{dt} = 2k_1[Br_2] - 2k_{-1}[Br^\cdot]^2 - k_2[Br^\cdot][H_2] + k_{-2}[HBr][H^\cdot] + k_3[H^\cdot][Br_2] =0 \nonumber \]

    Adding these two expressions cancels the terms involving \(k_2\), \(k_{-2}\), and \(k_3\). The result is

    \[ 2 k_1 [Br_2] - 2k_{-1} [Br^\cdot]^2 = 0 \nonumber \]

    Solving for \(Br^\cdot\)

    \[ Br^\cdot = \sqrt{\dfrac{k_1[Br_2]}{k_{-1}}} \nonumber \]

    This can be substituted into an expression for the \(H^\cdot\) that is generated by solving the steady state expression for \(d[H^\cdot]/dt\).

    \[[H^\cdot] = \dfrac{k_2 [Br^\cdot] [H_2]}{k_{-2}[HBr] + k_3[Br_2]} \nonumber \]

    so

    \[[H^\cdot] = \dfrac{k_2 \sqrt{\dfrac{k_1[Br_2]}{k_{-1}}} [H_2]}{k_{-2}[HBr] + k_3[Br_2]} \nonumber \]

    Now, armed with expressions for \(H^\cdot\) and \(Br^\cdot\), we can substitute them into an expression for the rate of production of the product \(HBr\):

    \[ \dfrac{[HBr]}{dt} = k_2[Br^\cdot] [H_2] + k_3 [H^\cdot] [Br_2] - k_{-2}[H^\cdot] [HBr] \nonumber \]

    After substitution and simplification, the result is

    \[ \dfrac{[HBr]}{dt} = \dfrac{2 k_2 \left( \dfrac{k_1}{k_{-1}}\right)^{1/2} [H_2][Br_2]^{1/2}}{1+ \dfrac{k_{-1}}{k_3} \dfrac{[HBr]}{[Br_2]} } \nonumber \]

    Multiplying the top and bottom expressions on the right by \([Br_2]\) produces

    \[ \dfrac{[HBr]}{dt} = \dfrac{2 k_2 \left( \dfrac{k_1}{k_{-1}}\right)^{1/2} [H_2][Br_2]^{3/2}}{[Br_2] + \dfrac{k_{-1}}{k_3} [HBr] } \nonumber \]

    which matches the form of the rate law found experimentally (Equation \ref{exp})! In this case,

    \[ k = 2k_2 \sqrt{ \dfrac{k_1}{k_{-1}}} \nonumber \]

    and

    \[ k'= \dfrac{k_{-2}}{k_3} \nonumber \]


    This page titled 12.9: Chain Reactions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.