27: Extension 17 - Solid-Solution Phase Diagrams

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

• 27.1: Solid-Liquid Systems - Eutectic Points
Phase diagrams are often complex with multiple phases that exhibit  differing non-ideal behavior like minimum boiling azeotropes, eutectic points (omposition for which the mixture of the two solids has the lowest melting point), incongruent melting where the stable compound formed by two solids is only stable in the solid phase and will decompose upon melting.
• 27.2: Cooling Curves
The method that is used to map the phase boundaries on a phase diagram is to measure the rate of cooling for a sample of known composition. The rate of cooling will change as the sample (or some portion of it) begins to undergo a phase change. These “breaks” will appear as changes in slope in the temperature-time curve.

27: Extension 17 - Solid-Solution Phase Diagrams is shared under a not declared license and was authored, remixed, and/or curated by Andrea Allgood Carter.