8: Introduction to Solid State Chemistry
- Page ID
- 552525
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Introduction to Solid State Chemistry is a first-year single-semester college course on the principles of chemistry. This unique and popular course satisfies MIT’s general chemistry degree requirement, with an emphasis on solid-state materials and their application to engineering systems.
- 8.1: The Nature of Crystalline Solids
- This page discusses the formation and classification of solid phases in materials, highlighting the dominance of interatomic forces over thermal energy and different structural types—ionic, covalent, metallic, and Van der Waals. It introduces crystal structures defined by space lattices and unit cells, emphasizing the concepts of atomic arrangement and packing efficiency.
- 8.1.1: Crystal Structures of Metals
- 8.1.2: Ionic and Covalent Solids - Structures
- 8.1.2.1: Prelude to Ionic and Covalent Solids - Structures
- 8.1.2.2: Close-packing and Interstitial Sites
- 8.1.2.3: Structures Related to NaCl and NiAs
- 8.1.2.4: Tetrahedral Structures
- 8.1.2.5: Layered Structures and Intercalation Reactions
- 8.1.2.6: Bonding in TiS₂, MoS₂, and Pyrite Structures
- 8.1.2.7: Spinel, Perovskite, and Rutile Structures
- 8.1.2.8: Discussion Questions
- 8.1.2.9: References
- 8.2: Bonding in Metals, Semiconductors and Insulators – Band Structure
- This page covers the properties of metals, emphasizing their electrical conductivity, malleability, and bonding through free electron gas and energy band theories. It contrasts metal characteristics with insulators and semiconductors, explaining that metals allow easy electron movement, while insulators prevent conductivity due to filled valence bands.
- 8.2.1: Prelude to Electronic Properties of Materials - Superconductors and Semiconductors
- 8.2.2: Periodic Trends- Metals, Semiconductors, and Insulators
- 8.2.3: Bonding in Metals
- 8.2.4: Conduction in Metals
- 8.2.5: Superconductors
- 8.2.6: Semiconductors- Band Gaps, Colors, Conductivity and Doping
- 8.2.7: Semiconductor p-n Junctions
- 8.2.8: Diodes, LEDs and Solar Cells
- 8.3: X-rays and X-ray Diffraction
- This page covers the discovery and development of X-rays, starting with Röntgen in 1895 and the confirmation of their wave nature by von Laue. It explains X-ray production, including bremsstrahlung radiation and characteristic emissions linked to atomic number, as well as applications in chemical analysis through diffraction governed by Bragg's Law.
- 8.4: The Imperfect Solid State
- This page explores the significance of defects in crystals, emphasizing how they can be engineered to enhance material properties for technological use. It categorizes defects into point, line, planar, and volume types, detailing their roles in electrical conductivity, mechanical strength, and brittleness. Understanding vacancies, dislocations, and grain boundaries is vital for material science, as they influence diffusion, deformation, and surface energy.
- 8.5: Glasses
- This page outlines crystallization in liquids and the formation of glass due to complex molecular configurations. It discusses the glass transition temperature and the rapid cooling of metallic glasses. The properties and structure of silica glasses are presented, highlighting how network modifiers like sodium oxide and potassium ions affect glass strength and viscosity. The page addresses issues such as devitrification and recrystallization, along with methods to enhance glass durability.
- 8.6: Phase Equilibria and Phase Diagrams
- This page covers phase diagrams, crucial for analyzing material behaviors under varying conditions by illustrating phase stability and transitions. It discusses thermodynamic principles like energy changes, the First Law of Thermodynamics, and the roles of enthalpy, entropy, and Gibbs free energy in phase changes. The construction and interpretation of binary phase diagrams are highlighted, detailing solubility relations and phase compositions.


