Skip to main content
Chemistry LibreTexts

8: Chemical Equilibrium

  • Page ID
    211191
    • 8.1: The Equilibrium Constant (K)
      The law of mass action describes a system at equilibrium in terms of the concentrations of the products and the reactants. For a system involving one or more gases, either the molar concentrations of the gases or their partial pressures can be used.
    • 8.2: Expressing the Equilibrium Constant in Terms of Pressure
      An equilibrated system that contains products and reactants in a single phase is a homogeneous equilibrium; a system whose reactants, products, or both are in more than one phase is a heterogeneous equilibrium.
    • 8.3: Calculating the Equilibrium Constant From Measured Equilibrium Concentrations
      Various methods can be used to solve the two fundamental types of equilibrium problems: (1) those in which we calculate the concentrations of reactants and products at equilibrium and (2) those in which we use the equilibrium constant and the initial concentrations of reactants to determine the composition of the equilibrium mixture. When an equilibrium constant is calculated from equilibrium concentrations, concentrations or partial pressures are use into the equilibrium constant expression.
    • 8.4: Heterogenous Equilibria - Reactions Involving Solids and Liquids
      When the products and reactants of an equilibrium reaction form a single phase, whether gas or liquid, the system is a homogeneous equilibrium. In such situations, the concentrations of the reactants and products can vary over a wide range. In contrast, a system whose reactants, products, or both are in more than one phase is a heterogeneous equilibrium, such as the reaction of a gas with a solid or liquid.
    • 8.5: Le Châtelier’s Principle- How a System at Equilibrium Responds to Disturbances
      Systems at equilibrium can be disturbed by changes to temperature, concentration, and, in some cases, volume and pressure; volume and pressure changes will disturb equilibrium if the number of moles of gas is different on the reactant and product sides of the reaction. The system's response to these disturbances is described by Le Châtelier's principle: The system will respond in a way that counteracts the disturbance. Adding a catalyst affects the reaction rates but does not alter equilibrium.