Skip to main content
Chemistry LibreTexts

2.3: 3. AB1- Equilibrium Acids and Bases

  • Page ID
    436098
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

     

    Summary of AB1 and AB2:

    Acid and base chemistry has so many applications and so many essential properties throughout chemistry that it is broken down into two Core Goals:

    AB1: Equilibrium Acids and Bases - focused on the qualitative nature of acid/base chemistry and the equilibrium between them.
    AB2: Quantitative understanding of the various properties of complex acid/base systems.

    AB1: Equilibrium Acids and Bases

    Demonstrate chemical literacy regarding chemical equilibrium with an emphasis on:

    1. how chemical systems change as they move toward a state of equilibrium;
    2. how the equilibrium condition itself can be characterized;
    3. how a system at equilibrium will respond to changes in conditions;
    4. the relationship chemical equilibrium to chemical kinetics and thermodynamics;
    5. the relative reactivity of acids and bases;
    6. quantitative calculations involving chemical equilibria & aqueous solutions of acids, bases, and salts.
    • Relate the equilibrium constant to the rate constants for the forward and reverse reactions (moved to SOL)
    • Define reaction quotient, Q, relate Q to the equilibrium constant, K, and explain how Q can be used to predict whether a system is at equilibrium, and if not, the direction a chemical system will move to establish equilibrium (moved to SOL)
    • Given a chemical equation, write the expression for the reaction quotient and/or equilibrium constant (moved to SOL)
    • Apply equilibrium concepts to calculations involving chemical reactions, concentrations, gas pressures, free energy, and other variables. (moved to SOL)
    • Interpret the magnitudes of equilibrium constants regarding the extent of reaction that has occurred in the forward direction once equilibrium has been established (moved to SOL)
    • Identify factors that can stress a system that is in a state of equilibrium and explain why these factors stress the equilibrium system (moved to SOL)
    • Of the above factors, identify those that will alter the magnitude of the equilibrium constant, and how the constant will change as a result of the stress (moved to SOL)
    • Apply Le Châtelier’s principle to predict the direction a system, originally in a state of equilibrium, will shift when stressed by adding or removing reactants, adding or removing products, or heating or cooling the system (moved to SOL)
    • Identify common strong acids and bases by name and formula
    • Characterize acids and bases according to the Arrhenius and Bronsted-Lowry definitions (model)
    • Identify Bronsted-Lowry Acid-Base pairs (acid and conjugate base, base and conjugate acid) in a given reaction
    • Write chemical reaction equations and equilibrium expressions for the ionization of an acid and for the ionization of a base in water
    • Write the equation for the auto-ionization of water and relate to Kw, [H+], [OH-], pH, and pOH
    • Describe changes in Kw, [H+], [OH-], pH, and pOH as a solution increases in acidity or in alkalinity
    • Characterize acids and bases in terms of their strength using the following properties: Ka, pKa, Kb, pKb, [H+], pH, [OH-], pOH, % ionization in water, and strength relative to water
    • Identify structural factors that influence the strength of a substance as an acid or as a base and use that information to predict/rank the relative strengths of another given group of substances
    • Use Ka, pKa, Kb, or pKb to predict the extent of an acid-base reaction
    • In terms of Le Châtelier’s Principle, explain why the addition of a salt containing the conjugate base of a weak acid, or the conjugate acid of a weak base, suppresses the ionization of the acid or base respectively

    2.3: 3. AB1- Equilibrium Acids and Bases is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?