Skip to main content
Chemistry LibreTexts

Solutions 10

  • Page ID
    204090
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Q1:

    Q2:

    The number of degrees of freedom a molecule has is 3N, where N is the number of atoms. Three are translational and for non-linear molecules, three are rotational, leaving 3N-6 vibrational modes. For linear molecules there are only two rotational degrees of freedom, leaving 3N-5 vibrational modes.

    Molecule Vibrational Modes
    \(NH_3\) 6
    \(C_6H_6\) 30
    \(C_{10}H_8\) 48
    \(CH_4\), 9
    \(C_2H_2\) 7

    Q3:

    The one mode of CO stretch is IR active. All but the symmetric stretch of \(CO_2\) are IR active. The one mode of HCl is also active.

    Q4:

    The vibrational frequency is given by \(\omega = \sqrt(\frac{k}{\mu})\), where \(\mu = \frac{m_1 m_2 }{m_1 + m_2}\). The masses are provided.

    Q5:

    The vibrational energy is given by \(E_\nu = \hbar \omega (\nu + \frac{1}{2})\).

    Q6:

    The corresponding wave number of \(D_2 O\) compared with \(H_2 O\) is smaller due to the increased reduced mass, resulting in a lower energy read.


    Solutions 10 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?