Solutions 10

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

Q2:

The number of degrees of freedom a molecule has is 3N, where N is the number of atoms. Three are translational and for non-linear molecules, three are rotational, leaving 3N-6 vibrational modes. For linear molecules there are only two rotational degrees of freedom, leaving 3N-5 vibrational modes.

 Molecule Vibrational Modes $$NH_3$$ 6 $$C_6H_6$$ 30 $$C_{10}H_8$$ 48 $$CH_4$$, 9 $$C_2H_2$$ 7

Q3:

The one mode of CO stretch is IR active. All but the symmetric stretch of $$CO_2$$ are IR active. The one mode of HCl is also active.

Q4:

The vibrational frequency is given by $$\omega = \sqrt(\frac{k}{\mu})$$, where $$\mu = \frac{m_1 m_2 }{m_1 + m_2}$$. The masses are provided.

Q5:

The vibrational energy is given by $$E_\nu = \hbar \omega (\nu + \frac{1}{2})$$.

Q6:

The corresponding wave number of $$D_2 O$$ compared with $$H_2 O$$ is smaller due to the increased reduced mass, resulting in a lower energy read.

Solutions 10 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.