15.6: Water as an Acid and as a Base
- Page ID
- 289469
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)⚙️ Learning Objectives
- Describe the autoionization of water.
- Calculate the concentrations of H3O+ and OH− in aqueous solutions, knowing the other concentration.
We have already seen that H2O can act as an acid, as with its reaction with NH3:
\[\color[rgb]{0.0, 0.0, 0.8}{\underbrace{\ce{NH3}}_{\text{base}}} + \color[rgb]{0.8, 0.0, 0.0}{\underbrace{\ce{H2O}}_{\text{acid}}} \color{black} \ce{<=> NH4^{+} + OH^{−}}\]
and that H2O can act as a base, as with its reaction with HCl:
\[\color[rgb]{0.8, 0.0, 0.0}{\underbrace{\ce{HCl}}_{\text{acid}}} + \color[rgb]{0.0, 0.0, 0.8}{\underbrace{\ce{H2O}}_{\text{base}}} \color{black} \ce{-> H3O^{+} + Cl^{−}}\]
Therefore, it may not surprise you to learn that within any given sample of water, some H2O molecules act as an acid and some H2O molecules act as a base. The chemical equation is as follows:
\[\color[rgb]{0.8, 0.0, 0.0}{\underbrace{\ce{H2O}}_{\text{acid}}} + \color[rgb]{0.0, 0.0, 0.8}{\underbrace{\ce{H2O}}_{\text{base}}} \color{black} \ce{<=> H3O^{+} + OH^{−}}\]
However, this process (shown in Figure \(\PageIndex{1}\)), called the autoionization of water, occurs to a very small extent, with only 6 out of every 100,000,000 H2O molecules participating in autoionization at 25°C.

This represents a concentration of 1.0 × 10–7 M for both H3O+ (aq) and OH− (aq) in a sample of pure H2O (at 25°C). As previously discussed, square brackets, [ ], around a dissolved species represents the molarity of that species. This means that for any sample of pure water:
\[{\color[rgb]{0.8, 0.0, 0.0}\left[{\mathrm H}_3\mathrm O^+\right]}={\color[rgb]{0.0, 0.0, 0.8}\left[\mathrm{OH}^-\right]}=1.0\times10^{-7}\;\mathrm M\]
The product of these two concentrations is 1.0 × 10−14:
\[{\color[rgb]{0.8, 0.0, 0.0}\left[{\mathrm H}_3\mathrm O^+\right]}\times{\color[rgb]{0.0, 0.0, 0.8}\left[\mathrm{OH}^-\right]}=\left(1.0\times10^{-7}\right)\left(1.0\times10^{-7}\right)=1.0\times10^{-14}\]
It turns out that for an aqueous solution at 25°C, the product of the two concentrations, \({\color[rgb]{0.8, 0.0, 0.0}\left[{\mathrm H}_3\mathrm O^+\right]}\times{\color[rgb]{0.0, 0.0, 0.8}\left[\mathrm{OH}^-\right]}\), is always equal to 1.0 × 10−14, regardless of whether the aqueous solution is acidic, basic, or neutral. In other words,
\[{\color[rgb]{0.8, 0.0, 0.0}\left[{\mathrm H}_3\mathrm O^+\right]}{\color[rgb]{0.0, 0.0, 0.8}\left[\mathrm{OH}^-\right]}=1.0\times10^{-14}\]
The product of these two concentrations is so important for aqueous solutions that it is called the autoionization constant of water and is denoted Kw:
\[K_w=\left[{\mathrm H}_3\mathrm O^+\right]\left[\mathrm{OH}^-\right]=1.0\times10^{-14}\]
This means that if \(\left[{\mathrm H}_3\mathrm O^+\right]\) is known for an aqueous solution, \(\left[\mathrm{OH}^-\right]\) may be calculated, since their product is always 1.0 × 10−14; or if \(\left[\mathrm{OH}^-\right]\) is known, that \(\left[{\mathrm H}_3\mathrm O^+\right]\) may be calculated. This also implies that as one concentration goes up, the other must go down to ensure their product always equals the value of Kw.
The degree of autoionization of water, as shown in Equation \(\PageIndex{3}\) changes with temperature. This means that the value of Kw also changes with temperature. Therefore, Equation \(\PageIndex{4}\) through Equation \(\PageIndex{7}\) are only valid at room temperature (25°C). In the event the temperature is not known, it is assumed to be 25°C.
Since pure water is neutral and \(\left[{\mathrm H}_3\mathrm O^+\right]=\left[\mathrm{OH}^-\right]=1.0\times10^{-7}\;\mathrm M\) in pure water, then any aqueous solution in which \(\left[{\mathrm H}_3\mathrm O^+\right]=\left[\mathrm{OH}^-\right]=1.0\times10^{-7}\;\mathrm M\) must also be neutral (at 25°C). From this, we can conclude the following:
- Since acids produce H3O+ when dissolved in water, \(\left[{\mathrm H}_3\mathrm O^+\right]\;>1.0\times10^{-7}\;\mathrm M\) in acidic solutions (at 25°C).
- Since bases produce OH– when dissolved in water, \(\left[\mathrm{OH}^-\right]>1.0\times10^{-7}\;\mathrm M\) in basic solutions (at 25°C).
✅ Example \(\PageIndex{1}\)
What is the \(\left[\mathrm{OH}^-\right]\) of an aqueous solution if the \(\left[{\mathrm H}_3\mathrm O^+\right]\) is 1.0 × 10−4 M?
Solution
Steps for Problem Solving | |
---|---|
Identify the "given" information and what the problem is asking you to "find." | Given: \(\left[{\mathrm H}_3\mathrm O^+\right]\) =1.0 × 10−4 M Find: \(\left[\mathrm{OH}^-\right]\) = ? M |
List known relationship(s). |
\(\left[{\mathrm H}_3\mathrm O^+\right]\left[\mathrm{OH}^-\right]=1.0\times10^{-14}\) |
Plan the problem. | Rearrange the equation to solve for \(\left[\mathrm{OH}^-\right]\). \(\left[\mathrm{OH}^-\right]=\dfrac{\cancel{\left[{\mathrm H}_3\mathrm O^+\right]}\left[\mathrm{OH}^-\right]}{\cancel{\left[{\mathrm H}_3\mathrm O^+\right]}}=\dfrac{1.0\times10^{-14}}{\left[{\mathrm H}_3\mathrm O^+\right]}\) |
Calculate the answer. | Now substitute the known quantities into the equation and solve. \(\left[\mathrm{OH}^-\right]=\dfrac{1.0\times10^{-14}}{\left[{\mathrm H}_3\mathrm O^+\right]}=\dfrac{1.0\times10^{-14}}{1.0\times10^{-4}}=\boxed{1.0\times10^{-10}\;\mathrm M}\) |
Think about your result. |
The \(\left[{\mathrm H}_3\mathrm O^+\right]\) is high (> 1 × 10-7 M), so \(\left[\mathrm{OH}^-\right]\) should be low. Furthermore, a quick answer check shows: \(\left[{\mathrm H}_3\mathrm O^+\right]\left[\mathrm{OH}^-\right]=\left(1.0\times10^{-4}\right)\left(1.0\times10^{-10}\right)=1.0\times10^{-14}\) |
✏️ Exercise \(\PageIndex{1}\)
What is \(\left[{\mathrm H}_3\mathrm O^+\right]\) in solution where \(\left[\mathrm{OH}^-\right]\) = 0.00032 M?
- Answer
- \(3.1\times10^{-11}\,\mathrm M\)
[H3O+] and [OH–] of Strong Acids and Bases
Finding the \(\left[{\mathrm H}_3\mathrm O^+\right]\) and \(\left[\mathrm{OH}^-\right]\) of strong acids and strong bases is relatively straightforward. Finding the \(\left[{\mathrm H}_3\mathrm O^+\right]\) and \(\left[\mathrm{OH}^-\right]\) of weak acids and weak bases is a bit more complicated and beyond the scope of this text.
As previously discussed, strong acids ionize completely. For monoprotic strong acids (strong acids with only one H),
\[\left[{\mathrm H}_3\mathrm O^+\right]\;=\;\left[\mathrm{acid}\right]\]
This means that \(\left[{\mathrm H}_3\mathrm O^+\right]\) = 0.10 M in a solution of 0.10 M HNO3, a strong acid, since one H3O+ ion forms for each molecule of HNO3:
\({\mathrm{HNO}}_3\;(aq)\;+\;{\mathrm H}_2\mathrm O\;(l)\;\xrightarrow{100\%}\;{\mathrm H}_3\mathrm O^+\;(aq)\;+\;\mathrm{NO}_3^-\;(aq)\)
For H2SO4, the only strong acid that is diprotic (has two H atoms) , \(\left[{\mathrm H}_3\mathrm O^+\right]\) = [acid] is a close enough approximation, though the \(\left[{\mathrm H}_3\mathrm O^+\right]\) is slightly greater than [acid], since more than one H3O+ ion forms for each molecule of H2SO4. However, it is much for difficult for the second proton (H+) to be released from H2SO4, which is why \(\left[{\mathrm H}_3\mathrm O^+\right]\) = [acid] remains a close enough approximation.
Also previously discussed, strong bases are soluble in water and dissociate completely. For strong bases,
\[\left[\mathrm{OH}^-\right]=\left[\mathrm{base}\right]\times\mathrm{number}\;\mathrm{of}\;\mathrm{OH}^-\;\mathrm{ions}\;\mathrm{in}\;\mathrm{the}\;\mathrm{chemical}\;\mathrm{formula}\]
This means that \(\left[\mathrm{OH}^-\right]\) = 0.10 M in a solution of 0.10 M NaOH, a strong base, since there is only one OH− ion in NaOH:
\(\mathrm{NaOH}\;(aq)\;\xrightarrow{100\%}\;\mathrm{Na}^+\;(aq)\;+\;\mathrm{OH}^-\;(aq)\)
and that \(\left[\mathrm{OH}^-\right]\) = 0.20 M in a solution of 0.10 M Ba(OH)2, also a strong base, since there are two OH− ions in Ba(OH)2:
\(\mathrm{Ba}{(\mathrm{OH})}_2\;(aq)\;\xrightarrow{100\%}\;\mathrm{Ba}^{2+}\;(aq)\;+\;2\;\mathrm{OH}^-\;(aq)\)
✅ Example \(\PageIndex{2}\)
What is the:
- \(\left[{\mathrm H}_3\mathrm O^+\right]\) in 0.0023 M HBr?
- \(\left[{\mathrm H}_3\mathrm O^+\right]\) in 0.0023 M HNO3?
- \(\left[\mathrm{OH}^-\right]\) in 0.0023 M KOH?
- \(\left[\mathrm{OH}^-\right]\) in 0.0023 M Sr(OH)2?
Solution
- \(\left[{\mathrm H}_3\mathrm O^+\right]\;=\;\left[\mathrm{acid}\right]\) in a strong acid, so \(\left[{\mathrm H}_3\mathrm O^+\right]\) = 0.0023 M
- \(\left[{\mathrm H}_3\mathrm O^+\right]\;=\;\left[\mathrm{acid}\right]\) in a strong acid, so \(\left[{\mathrm H}_3\mathrm O^+\right]\) = 0.0023 M
- \(\left[\mathrm{OH}^-\right]=\left[\mathrm{base}\right]\times\mathrm{number}\;\mathrm{of}\;\mathrm{OH}^-\;\mathrm{ions}\;\mathrm{in}\;\mathrm{the}\;\mathrm{chemical}\;\mathrm{formula}\) for a strong base, so \(\left[\mathrm{OH}^-\right]\) = 0.0023 M, since there is only one OH− ion in KOH.
- \(\left[\mathrm{OH}^-\right]=\left[\mathrm{base}\right]\times\mathrm{number}\;\mathrm{of}\;\mathrm{OH}^-\;\mathrm{ions}\;\mathrm{in}\;\mathrm{the}\;\mathrm{chemical}\;\mathrm{formula}\) for a strong base, so \(\left[\mathrm{OH}^-\right]\) = 0.0046 M, since there are two OH− ions in Sr(OH)2. (0.0023 M × 2 = 0.0046 M).
✅ Example \(\PageIndex{3}\)
What is \(\left[{\mathrm H}_3\mathrm O^+\right]\) in a 0.0044 M solution of Ca(OH)2?
Solution
Steps for Problem Solving | |
---|---|
Identify the "given" information and what the problem is asking you to "find." | Given: Ca(OH)2 = 0.0044 M Find: \(\left[{\mathrm H}_3\mathrm O^+\right]\) = ? M |
List known relationship(s). |
\(\left[\mathrm{OH}^-\right]=\left[\mathrm{base}\right]\times\mathrm{number}\;\mathrm{of}\;\mathrm{OH}^-\;\mathrm{ions}\;\mathrm{in}\;\mathrm{the}\;\mathrm{chemical}\;\mathrm{formula}\) \(\left[{\mathrm H}_3\mathrm O^+\right]\left[\mathrm{OH}^-\right]=1.0\times10^{-14}\) |
Plan the problem. | Rearrange the equation to solve for \(\left[{\mathrm H}_3\mathrm O^+\right]\). \(\left[{\mathrm H}_3\mathrm O^+\right]=\dfrac{\left[{\mathrm H}_3\mathrm O^+\right]\cancel{\left[\mathrm{OH}^-\right]}}{\cancel{\left[\mathrm{OH}^-\right]}}=\dfrac{1.0\times10^{-14}}{\left[\mathrm{OH}^-\right]}\) |
Calculate. | \(\left[\mathrm{OH}^-\right]=0.0044\;\mathrm M\;\times\;2\;=\;0.0088\;\mathrm M\) \(\left[{\mathrm H}_3\mathrm O^+\right]=\dfrac{1.0\times10^{-14}}{\left[\mathrm{OH}^-\right]}=\dfrac{1.0\times10^{-14}}{0.0088}=\boxed{1.1\times10^{-12}\;\mathrm M}\) |
Think about your result. | The \(\left[\mathrm{OH}^-\right]\) is high (> 1 × 10-7 M), so \(\left[{\mathrm H}_3\mathrm O^+\right]\) should be low (< 1 × 10-7 M). |
✏️ Exercise \(\PageIndex{3}\)
Calculate the \(\left[{\mathrm H}_3\mathrm O^+\right]\) and \(\left[\mathrm{OH}^-\right]\) of 6.1×10–3 M HI.
- Answer
- \(\left[{\mathrm H}_3\mathrm O^+\right]\) = 6.1×10–3 M; \(\left[\mathrm{OH}^-\right]\) = 1.6×10–12 M
This page is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Lance S. Lund (Anoka-Ramsey Community College), Marisa Alviar-Agnew, and Henry Agnew.