Skip to main content
Chemistry LibreTexts

15.6: Water as an Acid and as a Base

  • Page ID
    289469
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    ⚙️ Learning Objectives

    • Describe the autoionization of water.
    • Calculate the concentrations of H3O+ and OH in aqueous solutions, knowing the other concentration.


    We have already seen that H2O can act as an acid, as with its reaction with NH3:

    \[\color[rgb]{0.0, 0.0, 0.8}{\underbrace{\ce{NH3}}_{\text{base}}} + \color[rgb]{0.8, 0.0, 0.0}{\underbrace{\ce{H2O}}_{\text{acid}}} \color{black} \ce{<=> NH4^{+} + OH^{−}}\]

    and that H2O can act as a base, as with its reaction with HCl:

    \[\color[rgb]{0.8, 0.0, 0.0}{\underbrace{\ce{HCl}}_{\text{acid}}} + \color[rgb]{0.0, 0.0, 0.8}{\underbrace{\ce{H2O}}_{\text{base}}} \color{black} \ce{-> H3O^{+} + Cl^{−}}\]

    Therefore, it may not surprise you to learn that within any given sample of water, some H2O molecules act as an acid and some H2O molecules act as a base. The chemical equation is as follows:

    \[\color[rgb]{0.8, 0.0, 0.0}{\underbrace{\ce{H2O}}_{\text{acid}}} + \color[rgb]{0.0, 0.0, 0.8}{\underbrace{\ce{H2O}}_{\text{base}}} \color{black} \ce{<=> H3O^{+} + OH^{−}}\]

    However, this process (shown in Figure \(\PageIndex{1}\)), called the autoionization of water, occurs to a very small extent, with only 6 out of every 100,000,000 H2O molecules participating in autoionization at 25°C.
     

    Figure \(\PageIndex{1}\): The autoionization of water, resulting in hydronium ions and hydroxide ions. (Manuel Almagro Rivas via Wikimedia Commons)


    This represents a concentration of 1.0 × 10–7 M for both H3O+ (aq) and OH (aq) in a sample of pure H2O (at 25°C). As previously discussed, square brackets, [ ], around a dissolved species represents the molarity of that species. This means that for any sample of pure water:

    \[{\color[rgb]{0.8, 0.0, 0.0}\left[{\mathrm H}_3\mathrm O^+\right]}={\color[rgb]{0.0, 0.0, 0.8}\left[\mathrm{OH}^-\right]}=1.0\times10^{-7}\;\mathrm M\]

    The product of these two concentrations is 1.0 × 10−14:

    \[{\color[rgb]{0.8, 0.0, 0.0}\left[{\mathrm H}_3\mathrm O^+\right]}\times{\color[rgb]{0.0, 0.0, 0.8}\left[\mathrm{OH}^-\right]}=\left(1.0\times10^{-7}\right)\left(1.0\times10^{-7}\right)=1.0\times10^{-14}\]

    It turns out that for an aqueous solution at 25°C, the product of the two concentrations, \({\color[rgb]{0.8, 0.0, 0.0}\left[{\mathrm H}_3\mathrm O^+\right]}\times{\color[rgb]{0.0, 0.0, 0.8}\left[\mathrm{OH}^-\right]}\), is always equal to 1.0 × 10−14, regardless of whether the aqueous solution is acidic, basic, or neutral. In other words, 

    \[{\color[rgb]{0.8, 0.0, 0.0}\left[{\mathrm H}_3\mathrm O^+\right]}{\color[rgb]{0.0, 0.0, 0.8}\left[\mathrm{OH}^-\right]}=1.0\times10^{-14}\]

    The product of these two concentrations is so important for aqueous solutions that it is called the autoionization constant of water and is denoted Kw:

    \[K_w=\left[{\mathrm H}_3\mathrm O^+\right]\left[\mathrm{OH}^-\right]=1.0\times10^{-14}\]

    This means that if \(\left[{\mathrm H}_3\mathrm O^+\right]\) is known for an aqueous solution, \(\left[\mathrm{OH}^-\right]\) may be calculated, since their product is always 1.0 × 10−14; or if \(\left[\mathrm{OH}^-\right]\) is known, that \(\left[{\mathrm H}_3\mathrm O^+\right]\) may be calculated. This also implies that as one concentration goes up, the other must go down to ensure their product always equals the value of Kw.
     

    ⚓️ Temperature Matters

    The degree of autoionization of water, as shown in Equation \(\PageIndex{3}\) changes with temperature. This means that the value of Kw also changes with temperature. Therefore, Equation \(\PageIndex{4}\) through Equation \(\PageIndex{7}\) are only valid at room temperature (25°C). In the event the temperature is not known, it is assumed to be 25°C.


    Since pure water is neutral and \(\left[{\mathrm H}_3\mathrm O^+\right]=\left[\mathrm{OH}^-\right]=1.0\times10^{-7}\;\mathrm M\) in pure water, then any aqueous solution in which \(\left[{\mathrm H}_3\mathrm O^+\right]=\left[\mathrm{OH}^-\right]=1.0\times10^{-7}\;\mathrm M\) must also be neutral (at 25°C). From this, we can conclude the following:

    • Since acids produce H3O+ when dissolved in water, \(\left[{\mathrm H}_3\mathrm O^+\right]\;>1.0\times10^{-7}\;\mathrm M\) in acidic solutions (at 25°C).
    • Since bases produce OH when dissolved in water, \(\left[\mathrm{OH}^-\right]>1.0\times10^{-7}\;\mathrm M\) in basic solutions (at 25°C).
           

    ✅ Example \(\PageIndex{1}\)

    What is the \(\left[\mathrm{OH}^-\right]\) of an aqueous solution if the \(\left[{\mathrm H}_3\mathrm O^+\right]\) is 1.0 × 10−4 M?

    Solution

    Steps for Problem Solving  
    Identify the "given" information and what the problem is asking you to "find."
    Given: \(\left[{\mathrm H}_3\mathrm O^+\right]\) =1.0 × 10−4 M

    Find: \(\left[\mathrm{OH}^-\right]\) = ? M
     

    List known relationship(s).
     
    \(\left[{\mathrm H}_3\mathrm O^+\right]\left[\mathrm{OH}^-\right]=1.0\times10^{-14}\)
    Plan the problem.
    Rearrange the equation to solve for \(\left[\mathrm{OH}^-\right]\).

    \(\left[\mathrm{OH}^-\right]=\dfrac{\cancel{\left[{\mathrm H}_3\mathrm O^+\right]}\left[\mathrm{OH}^-\right]}{\cancel{\left[{\mathrm H}_3\mathrm O^+\right]}}=\dfrac{1.0\times10^{-14}}{\left[{\mathrm H}_3\mathrm O^+\right]}\)
     
    Calculate the answer.
    Now substitute the known quantities into the equation and solve.

    \(\left[\mathrm{OH}^-\right]=\dfrac{1.0\times10^{-14}}{\left[{\mathrm H}_3\mathrm O^+\right]}=\dfrac{1.0\times10^{-14}}{1.0\times10^{-4}}=\boxed{1.0\times10^{-10}\;\mathrm M}\)
     

    Think about your result.
     

    The \(\left[{\mathrm H}_3\mathrm O^+\right]\) is high (> 1 × 10-7 M), so \(\left[\mathrm{OH}^-\right]\) should be low.

    Furthermore, a quick answer check shows:

    \(\left[{\mathrm H}_3\mathrm O^+\right]\left[\mathrm{OH}^-\right]=\left(1.0\times10^{-4}\right)\left(1.0\times10^{-10}\right)=1.0\times10^{-14}\)
     

     

    ✏️ Exercise \(\PageIndex{1}\)

    What is \(\left[{\mathrm H}_3\mathrm O^+\right]\) in solution where \(\left[\mathrm{OH}^-\right]\) = 0.00032 M?

    Answer
    \(3.1\times10^{-11}\,\mathrm M\)


    [H3O+] and [OH] of Strong Acids and Bases

    Finding the \(\left[{\mathrm H}_3\mathrm O^+\right]\) and \(\left[\mathrm{OH}^-\right]\) of strong acids and strong bases is relatively straightforward. Finding the \(\left[{\mathrm H}_3\mathrm O^+\right]\) and \(\left[\mathrm{OH}^-\right]\) of weak acids and weak bases is a bit more complicated and beyond the scope of this text.

    As previously discussed, strong acids ionize completely. For monoprotic strong acids (strong acids with only one H),

    \[\left[{\mathrm H}_3\mathrm O^+\right]\;=\;\left[\mathrm{acid}\right]\]

    This means that \(\left[{\mathrm H}_3\mathrm O^+\right]\) = 0.10 M in a solution of 0.10 M HNO3, a strong acid, since one H3O+ ion forms for each molecule of HNO3:

    \({\mathrm{HNO}}_3\;(aq)\;+\;{\mathrm H}_2\mathrm O\;(l)\;\xrightarrow{100\%}\;{\mathrm H}_3\mathrm O^+\;(aq)\;+\;\mathrm{NO}_3^-\;(aq)\)

    For H2SO4, the only strong acid that is diprotic (has two H atoms) , \(\left[{\mathrm H}_3\mathrm O^+\right]\) = [acid] is a close enough approximation, though the \(\left[{\mathrm H}_3\mathrm O^+\right]\) is slightly greater than [acid], since more than one H3O+ ion forms for each molecule of H2SO4. However, it is much for difficult for the second proton (H+) to be released from H2SO4, which is why \(\left[{\mathrm H}_3\mathrm O^+\right]\) = [acid] remains a close enough approximation.

    Also previously discussed, strong bases are soluble in water and dissociate completely. For strong bases,

    \[\left[\mathrm{OH}^-\right]=\left[\mathrm{base}\right]\times\mathrm{number}\;\mathrm{of}\;\mathrm{OH}^-\;\mathrm{ions}\;\mathrm{in}\;\mathrm{the}\;\mathrm{chemical}\;\mathrm{formula}\]

    This means that \(\left[\mathrm{OH}^-\right]\) = 0.10 M in a solution of 0.10 M NaOH, a strong base, since there is only one OH ion in NaOH:

    \(\mathrm{NaOH}\;(aq)\;\xrightarrow{100\%}\;\mathrm{Na}^+\;(aq)\;+\;\mathrm{OH}^-\;(aq)\)

    and that \(\left[\mathrm{OH}^-\right]\) = 0.20 M in a solution of 0.10 M Ba(OH)2, also a strong base, since there are two OH ions in Ba(OH)2:

    \(\mathrm{Ba}{(\mathrm{OH})}_2\;(aq)\;\xrightarrow{100\%}\;\mathrm{Ba}^{2+}\;(aq)\;+\;2\;\mathrm{OH}^-\;(aq)\)
     

    ✅ Example \(\PageIndex{2}\)

    What is the:

    1. \(\left[{\mathrm H}_3\mathrm O^+\right]\) in 0.0023 M HBr?
    2. \(\left[{\mathrm H}_3\mathrm O^+\right]\) in 0.0023 M HNO3?
    3. \(\left[\mathrm{OH}^-\right]\) in 0.0023 M KOH?
    4. \(\left[\mathrm{OH}^-\right]\) in 0.0023 M Sr(OH)2?

    Solution

    1. \(\left[{\mathrm H}_3\mathrm O^+\right]\;=\;\left[\mathrm{acid}\right]\) in a strong acid, so \(\left[{\mathrm H}_3\mathrm O^+\right]\) = 0.0023 M
    2. \(\left[{\mathrm H}_3\mathrm O^+\right]\;=\;\left[\mathrm{acid}\right]\) in a strong acid, so \(\left[{\mathrm H}_3\mathrm O^+\right]\) = 0.0023 M
    3. \(\left[\mathrm{OH}^-\right]=\left[\mathrm{base}\right]\times\mathrm{number}\;\mathrm{of}\;\mathrm{OH}^-\;\mathrm{ions}\;\mathrm{in}\;\mathrm{the}\;\mathrm{chemical}\;\mathrm{formula}\) for a strong base, so \(\left[\mathrm{OH}^-\right]\) = 0.0023 M, since there is only one OH ion in KOH.
    4. \(\left[\mathrm{OH}^-\right]=\left[\mathrm{base}\right]\times\mathrm{number}\;\mathrm{of}\;\mathrm{OH}^-\;\mathrm{ions}\;\mathrm{in}\;\mathrm{the}\;\mathrm{chemical}\;\mathrm{formula}\) for a strong base, so \(\left[\mathrm{OH}^-\right]\) = 0.0046 M, since there are two OH ions in Sr(OH)2. (0.0023 M × 2 = 0.0046 M).

     

    ✅ Example \(\PageIndex{3}\)

    What is \(\left[{\mathrm H}_3\mathrm O^+\right]\) in a 0.0044 M solution of Ca(OH)2?

    Solution

    Steps for Problem Solving  
    Identify the "given" information and what the problem is asking you to "find."
    Given: Ca(OH)2 = 0.0044 M

    Find: \(\left[{\mathrm H}_3\mathrm O^+\right]\) = ? M
     

    List known relationship(s).
     

    \(\left[\mathrm{OH}^-\right]=\left[\mathrm{base}\right]\times\mathrm{number}\;\mathrm{of}\;\mathrm{OH}^-\;\mathrm{ions}\;\mathrm{in}\;\mathrm{the}\;\mathrm{chemical}\;\mathrm{formula}\)

    \(\left[{\mathrm H}_3\mathrm O^+\right]\left[\mathrm{OH}^-\right]=1.0\times10^{-14}\)
     
    Plan the problem.
    Rearrange the equation to solve for \(\left[{\mathrm H}_3\mathrm O^+\right]\).

    \(\left[{\mathrm H}_3\mathrm O^+\right]=\dfrac{\left[{\mathrm H}_3\mathrm O^+\right]\cancel{\left[\mathrm{OH}^-\right]}}{\cancel{\left[\mathrm{OH}^-\right]}}=\dfrac{1.0\times10^{-14}}{\left[\mathrm{OH}^-\right]}\)
     
    Calculate.
    \(\left[\mathrm{OH}^-\right]=0.0044\;\mathrm M\;\times\;2\;=\;0.0088\;\mathrm M\)

    \(\left[{\mathrm H}_3\mathrm O^+\right]=\dfrac{1.0\times10^{-14}}{\left[\mathrm{OH}^-\right]}=\dfrac{1.0\times10^{-14}}{0.0088}=\boxed{1.1\times10^{-12}\;\mathrm M}\)
     
    Think about your result.
    The \(\left[\mathrm{OH}^-\right]\) is high (> 1 × 10-7 M), so \(\left[{\mathrm H}_3\mathrm O^+\right]\) should be low (< 1 × 10-7 M).
     

     

    ✏️ Exercise \(\PageIndex{3}\)

    Calculate the \(\left[{\mathrm H}_3\mathrm O^+\right]\) and \(\left[\mathrm{OH}^-\right]\) of 6.1×10–3 M HI.

    Answer
    \(\left[{\mathrm H}_3\mathrm O^+\right]\) = 6.1×10–3 M; \(\left[\mathrm{OH}^-\right]\) = 1.6×10–12 M

     

         


    This page is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Lance S. Lund (Anoka-Ramsey Community College), Marisa Alviar-Agnew, and Henry Agnew. 


    15.6: Water as an Acid and as a Base is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?