Skip to main content
Chemistry LibreTexts

1.22.8: Volume: Salt Solutions: Born-Drude-Nernst Equation

  • Page ID
    397792
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Differentiation of the Born Equation with respect to pressure (at fixed temperature) yields the Born-Drude-Nernst Equation which describes the difference in partial molar volumes of ion \(j\) in the gas phase and in solution. The simplest model assumes that the radius \(\mathrm{r}_{j}\) is independent of pressure [1].

    \[\begin{aligned}
    \Delta(\mathrm{pfg}&\rightarrow \mathrm{s} \ln ) \mathrm{V}_{\mathrm{j}}\left(\mathrm{c}_{\mathrm{j}}=1 \mathrm{~mol} \mathrm{dm} \mathrm{m}^{-3} ; \mathrm{id} ; \mathrm{p}, \mathrm{T}\right)=\\
    &-\mathrm{N}_{\mathrm{A}} \,\left(\mathrm{z}_{\mathrm{j}} \, \mathrm{e}\right)^{2} \,\left[\frac{1}{\varepsilon_{\mathrm{r}}} \,\left(\frac{\partial \varepsilon_{\mathrm{r}}}{\partial \mathrm{p}}\right)_{\mathrm{T}}\right] \, \frac{1}{8 \, \pi \, \mathrm{r}_{\mathrm{j}} \, \varepsilon_{0}}
    \end{aligned}\]

    A more complicated equation emerges if radius \(\mathrm{r}_{j}\) is assumed to depend on pressure, but there seems little merit in taking account of such a dependence.

    Footnote

    [1]

    \[\left[\mathrm{m}^{3} \mathrm{~mol}^{-1}\right]=\left[\mathrm{mol}^{-1}\right] \,\left[\mathrm{A}^{2} \mathrm{~s}^{2}\right] \,\left[\mathrm{N} \mathrm{m}^{-2}\right]^{-1} \,[1]^{-1} \,[1]^{-1} \,\left[\mathrm{m}^{-1}\right] \,\left[\mathrm{F} \mathrm{m}^{-1}\right]^{-}\]

    where, \(\left[\mathrm{F} \mathrm{m}^{-1}\right]=\left[\mathrm{A}^{2} \mathrm{~s}^{4} \mathrm{~kg}^{-1} \mathrm{~m}^{-3}\right]\)


    This page titled 1.22.8: Volume: Salt Solutions: Born-Drude-Nernst Equation is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.