Skip to main content
Chemistry LibreTexts

1.22.12: Volume of Reaction: Dependence on Pressure

  • Page ID
    397796
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Consider a chemical equilibrium between two solute \(\mathrm{X}(\mathrm{aq})\) and \(\mathrm{Y}(\mathrm{aq})\) in aqueous solution at fixed \(\mathrm{T}\) and \(\mathrm{p}\). We assume that the thermodynamic properties of the two solutes are ideal. The chemical equilibrium is be expressed as follows.

    \[\mathrm{X}(\mathrm{aq}) \Leftrightarrow \mathrm{Y}(\mathrm{aq})\]

    The (dimensionless intensive) degree of reaction \(\alpha\) is related to the equilibrium constant \(\mathrm{K}^{0}\) using equation (b) [1].

    \[\alpha=\mathrm{K}^{0} /\left(1+\mathrm{K}^{0}\right)\]

    At fixed temperature,

    \[\frac{\mathrm{d} \alpha}{\mathrm{dp}}=\frac{\mathrm{K}^{0}}{\left(1+\mathrm{K}^{0}\right)^{2}} \, \frac{\mathrm{d} \ln \left(\mathrm{K}^{0}\right)}{\mathrm{dp}}\]

    Or,

    \[\frac{\mathrm{d} \alpha}{\mathrm{dp}}=-\frac{\mathrm{K}^{0}}{\left(1+\mathrm{K}^{0}\right)^{2}} \, \frac{\Delta_{\mathrm{r}} \mathrm{V}^{0}(\mathrm{aq})}{\mathrm{R} \, \mathrm{T}}\]

    \(\Delta_{\mathrm{r}} \mathrm{V}^{0}(\mathrm{aq})\) is the limiting volume of reaction. The (equilibrium) volume of the system at a defined \(\mathrm{T}\) and \(\mathrm{p}\) is given by equation (e).

    \[\mathrm{V}(\mathrm{aq})=\mathrm{n}_{\mathrm{x}} \, \mathrm{V}_{\mathrm{x}}^{\infty}(\mathrm{aq})+\mathrm{n}_{\mathrm{Y}} \, \mathrm{V}_{\mathrm{Y}}^{\infty}(\mathrm{aq})+\mathrm{n}_{1} \, \mathrm{V}_{1}^{*}(\ell)\]

    \(\mathrm{V}_{1}^{*}(\ell)\) is the molar volume of solvent, water. If \(\mathrm{n}_{\mathrm{x}}^{0}\) is total amount of solute, (i.e. \(\mathrm{X}\) and \(\mathrm{Y}\)) in the system,

    \[\mathrm{V}(\mathrm{aq})=(1-\alpha) \, \mathrm{n}_{\mathrm{X}}^{0} \, \mathrm{V}_{\mathrm{x}}^{\infty}(\mathrm{aq})+\alpha \, \mathrm{n}_{\mathrm{X}}^{0} \, \mathrm{V}_{\mathrm{Y}}^{\infty}(\mathrm{aq})+\mathrm{n}_{1} \, \mathrm{V}_{1}^{*}(\ell)\]

    Or,

    \[\mathrm{V}(\mathrm{aq})=\mathrm{n}_{\mathrm{X}}^{0} \, \mathrm{V}_{\mathrm{x}}^{\infty}(\mathrm{aq})+\alpha \, \mathrm{n}_{\mathrm{X}}^{0} \, \Delta_{\mathrm{r}} \mathrm{V}^{\infty}(\mathrm{aq})+\mathrm{n}_{1} \, \mathrm{V}_{1}^{*}(\ell)\]

    \(\Delta_{\mathrm{r}} \mathrm{V}^{\infty}(\mathrm{aq})\) is the limiting volume of reaction. We assume that at temperature \(\mathrm{T}\), the properties \(\mathrm{V}_{\mathrm{x}}^{\infty}(\mathrm{aq}), \Delta_{\mathrm{r}} \mathrm{V}^{\infty}(\mathrm{aq}) \text { and } \mathrm{V}_{1}^{*}(\ell)\) are independent of pressure. Hence using equations (d) and (g) [2,3],

    \[\left(\frac{\partial \mathrm{V}(\mathrm{aq})}{\partial \mathrm{p}}\right)_{\mathrm{T}}=-\mathrm{n}_{\mathrm{X}}^{0} \, \frac{\left[\Delta_{\mathrm{r}} \mathrm{V}^{\infty}(\mathrm{aq})\right]^{2}}{\mathrm{R} \, \mathrm{T}} \, \frac{\mathrm{K}^{0}}{\left[1+\mathrm{K}^{0}\right]^{2}}\]

    We have taken account of the fact that,

    \[\frac{\mathrm{d} \ln \left(\mathrm{K}^{0}\right)}{\mathrm{dp}}=-\frac{\Delta_{\mathrm{r}} \mathrm{V}^{\infty}(\mathrm{aq})}{\mathrm{R} \, \mathrm{T}}\]

    Similarly [2]

    \[\left(\frac{\partial \mathrm{V}(\mathrm{aq})}{\partial \mathrm{T}}\right)_{\mathrm{p}}=\mathrm{n}_{\mathrm{X}}^{0} \, \frac{\Delta_{\mathrm{r}} \mathrm{V}^{\infty}(\mathrm{aq}) \, \Delta_{\mathrm{r}} \mathrm{H}^{\infty}(\mathrm{aq})}{\mathrm{R} \, \mathrm{T}^{2}} \, \frac{\mathrm{K}^{0}}{\left[1+\mathrm{K}^{0}\right]^{2}}\]

    Equation (h) shows that irrespective of the sign of \(\Delta_{\mathrm{r}} \mathrm{V}^{\infty}(\mathrm{aq})\), the contribution to \(\left(\frac{\partial V(a q)}{\partial p}\right)_{\mathrm{T}}\) is always negative. No such generalisation emerges with respect to equation (j) [4]. A closely related subject concerns the dependence of rate constants on pressure leading to volumes of activation [5].

    Footnotes

    [1] From equation (a)

      \(\mathrm{X}(\mathrm{aq})\) \(\Leftrightarrow\) \(\mathrm{Y}(\mathrm{aq})\)  
    At \(t = 0\), \(\mathrm{n}_{\mathrm{X}}^{0}\)   0 \(\mathrm{mol}\)
    At equilib; \(\mathrm{n}_{\mathrm{X}}^{0} - \xi\)   \(\xi\) \(\mathrm{mol}\)
    In volume \(\mathrm{V}\) \(\mathrm{n}_{\mathrm{X}}^{0}\)   \(\xi / \mathrm{V}\) \(\mathrm{mol m}^{-3}\)

    [2]

    \[\begin{aligned}
    &\mathrm{dV} / \mathrm{dp}=\left[\mathrm{m}^{3}\right] /\left[\mathrm{N} \mathrm{m}^{-2}\right]=\left[\mathrm{m}^{5} \mathrm{~N}^{-1}\right]\\
    &=\frac{\left[\mathrm{m}^{6}\right]}{[\mathrm{N} \mathrm{m}]}=\left[\mathrm{m}^{5} \mathrm{~N}^{-1}\right]
    \end{aligned}\]

    [3]

    \[\begin{aligned}
    &\frac{\mathrm{dV}}{\mathrm{dT}}=\frac{\left[\mathrm{m}^{3}\right]}{[\mathrm{K}]}\\
    &\mathrm{n}_{\mathrm{X}}^{0} \, \frac{\Delta_{\mathrm{r}} \mathrm{V}^{\infty}(\mathrm{aq}) \, \Delta_{\mathrm{r}} \mathrm{H}^{\infty}(\mathrm{aq})}{\mathrm{R} \, \mathrm{T}^{2}} \, \frac{\mathrm{K}^{0}}{\left[1+\mathrm{K}^{0}\right]^{2}}\\
    &=[\mathrm{mol}] \, \frac{\left[\mathrm{m}^{3} \mathrm{~mol}^{-1}\right] \,\left[\mathrm{J} \mathrm{mol}^{-1}\right]}{\left[\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right] \,[\mathrm{K}]^{2}}=\left[\mathrm{m}^{3} \mathrm{~K}^{-1}\right]
    \end{aligned}\]

    [4] See for example, J. E. Desnoyers, Pure Appl.Chem.,1982, 54,1469.

    [5] (i) W. J. leNoble, J. Chem. Educ.,1967,44,729. (ii) B. S. El’yanov and S. D. Hamann, Aust. J Chem.,1975,28,945. (iii) B.S. El’yanov and M. G. Gonikberg, Russian J. Phys. Chem., 1972, 46, 856.


    This page titled 1.22.12: Volume of Reaction: Dependence on Pressure is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.

    • Was this article helpful?