Skip to main content
Chemistry LibreTexts

1.20.5: Surfactants and Micelles: Mixed

  • Page ID
    397762
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    In many industrial and commercial applications, mixed surfactant systems are used [1]. An extensive literature examines the properties of these systems [2-8].

    A given aqueous solution contains two surfactants \(\mathrm{X}\) and \(\mathrm{Y}\) at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\). The critical micellar concentrations are \(\mathrm{cmc}_{\mathrm{X}}^{0}\) and \(\mathrm{cmc}_{\mathrm{Y}}^{0}\). For a solution containing both surfactants \(\mathrm{X}\) and \(\mathrm{Y}\), the critical micellar concentration of the mixed surfactant is cmc(mix). Here we use a pseudo-separate phase model for the micelles. The system under consideration comprises \(\mathrm{n}_{\mathrm{X}}^{0}\) and \(\mathrm{n}_{\mathrm{Y}}^{0}\) moles of the two surfactants. [Here the superscript ‘zero’ refers to the composition of the solution as prepared using the two pure surfactants.] A property \(\mathrm{r}\) is the ratio of the concentration of surfactant \(\mathrm{Y}\) to the total concentration of the two surfactants in the solution. Thus,

    \[\mathrm{r}=\frac{\mathrm{n}_{\mathrm{Y}}^{0}}{\mathrm{n}_{\mathrm{X}}^{0}+\mathrm{n}_{\mathrm{Y}}^{0}}=\frac{\mathrm{c}_{\mathrm{Y}}^{0}}{\mathrm{c}_{\mathrm{X}}^{0}+\mathrm{c}_{\mathrm{Y}}^{0}}\]

    Here \(\mathrm{c}_{\mathrm{X}}^{0}\) and \(\mathrm{c}_{\mathrm{Y}}^{0}\) are the concentrations of the two surfactants in solution. We define a model system where cmc(mix) is a linear function of the property \(\mathrm{r}\); equation (b).

    \[c m c(\operatorname{mix})=\left(\mathrm{cmc}_{\mathrm{Y}}^{0}-\mathrm{cmc}_{\mathrm{X}}^{0}\right) \, \mathrm{r}+\mathrm{cmc}_{\mathrm{X}}^{0}\]

    Or,

    \[\mathrm{cmc}(\mathrm{mix})=\mathrm{r} \, \mathrm{cmc}_{\mathrm{Y}}^{0}+\mathrm{cmc}_{\mathrm{X}}^{0} \,(1-\mathrm{r})\]

    Hence the critical micellar concentration of the two surfactants in a given solution, \(\mathrm{cmc}_{\mathrm{X}}\) and \(\mathrm{cmc}_{\mathrm{Y}}\), depend on parameter \(\mathrm{r}\).

    \[\mathrm{cmc}_{\mathrm{Y}}=\mathrm{cmc}_{\mathrm{Y}}^{0} \, \mathrm{r}\]

    \[\mathrm{cmc}_{\mathrm{X}}=\mathrm{cmc}_{\mathrm{X}}^{0} \,(1-\mathrm{r})\]

    Clearly in the absence of surfactant \(\mathrm{Y}\), micelles are not formed by surfactant \(\mathrm{X}\) until the concentration exceeds \(\mathrm{cmc}_{\mathrm{X}}^{0}\). If surfactant \(\mathrm{Y}\) is added to the solution, the \(\mathrm{cmc}_{\mathrm{X}}\) changes. In other words the properties of surfactants \(\mathrm{X}\) and \(\mathrm{Y}\) in a given solution are linked. We anticipate that for real system cmc(mix) is a function of \(\mathrm{c}_{\mathrm{X}}^{0}\) and \(\mathrm{c}_{\mathrm{Y}}^{0}\) so that cmc(mix) is a function of ratio \(\mathrm{r}\) and a quantity \(\theta\). The latter takes account of surfactant-surfactant interactions in the micellar pseudophase. Then

    \[\mathrm{cmc}(\operatorname{mix})=\mathrm{r} \,\left(\mathrm{cmc}_{\mathrm{Y}}^{0}-\mathrm{cmc}_{\mathrm{X}}^{0}\right) \, \exp [-\theta \,(1-\mathrm{r})]+\mathrm{cmc}_{\mathrm{X}}^{0}\]

    For the surfactants \(\mathrm{X}\) and \(\mathrm{Y}\),

    \[\mathrm{cmc}_{\mathrm{Y}}(\mathrm{mix})=\mathrm{r} \, \mathrm{cmc}_{\mathrm{Y}}^{0} \, \exp [-\theta \,(1-\mathrm{r})]\]

    and

    \[\mathrm{cmc}_{\mathrm{x}}(\mathrm{mix})=\mathrm{cmc}_{\mathrm{x}}^{0} \,\{1-\mathrm{r} \, \exp [-\theta \,(1-\mathrm{r})]\}\]

    Therefore we envisage that the cmc of solutions containing a mixture of surfactants differs from that for model systems.

    We turn attention to the enthalpies of mixed surfactant solutions. In the case of a mixed aqueous solution containing surfactants \(\mathrm{X}\) and \(\mathrm{Y}\), the partial molar enthalpies of the surfactants are anticipated to depend on their concentrations. We characterize a given system by a single enthalpic interaction parameter, \(\mathrm{h}(\text {int})\).

    \[\mathrm{H}_{\mathrm{x}}(\mathrm{aq})=\mathrm{H}_{\mathrm{x}}^{\infty}(\mathrm{aq})+\mathrm{h}(\text {int}) \,\left(\mathrm{c}_{\mathrm{x}} / \mathrm{c}_{\mathrm{r}}\right)\]

    \[\mathrm{H}_{\mathrm{Y}}(\mathrm{aq})=\mathrm{H}_{\mathrm{Y}}^{\infty}(\mathrm{aq})+\mathrm{h}(\text { int }) \,\left(\mathrm{c}_{\mathrm{Y}} / \mathrm{c}_{\mathrm{r}}\right)\]

    Here \(\mathrm{H}_{\mathrm{x}}^{\infty}(\mathrm{aq})\) and \(\mathrm{H}_{\mathrm{Y}}^{\infty}(\mathrm{aq})\) are the ideal (infinite dilution) partial molar enthalpies of the two monomeric surfactants in aqueous solutions at defined \(\mathrm{T}\) and \(\mathrm{p}\).

    The micellar pseudo-separate phase comprises two surfactants amounts \(\mathrm{n}_{X}(\text { mic })\) and \(\mathrm{n}_{Y}(\text { mic })\). The mole fractions \(\mathrm{x}_{\mathrm{X}}(\mathrm{mic})\) and \(\mathrm{x}_{\mathrm{X}}(\mathrm{mic}) \left[=\left(1-\mathrm{x}_{\mathrm{X}}(\mathrm{mic})\right]\) are given by equation (k).

    \[\mathrm{x}_{\mathrm{X}}(\mathrm{mic})=\mathrm{n}_{\mathrm{X}}(\mathrm{mic}) /\left[\mathrm{n}_{\mathrm{x}}(\mathrm{mic})+\mathrm{n}_{\mathrm{Y}}(\mathrm{mic})\right]=1-\mathrm{x}_{\mathrm{Y}}(\mathrm{mic})\]

    We relate the partial molar enthalpies \(\mathrm{H}_{\mathrm{X}}(\text {mic})\) and \(\mathrm{H}_{\mathrm{Y}}(\text {mic})\) in the mixed pseudo-separate phase to the molar enthalpies of surfactants \(\mathrm{X}\) and \(\mathrm{Y}\) in pure pseudo-separate micellar phases, \(\mathrm{H}_{\mathrm{X}}^{*}(\mathrm{mic})\) and \(\mathrm{H}_{\mathrm{Y}}^{*} \text { (mic) }\) using equations (l) and (m) where \(\mathrm{U}\) is a surfactant-surfactant interaction parameter.

    \[\mathrm{H}_{\mathrm{X}}(\text { mic })=\mathrm{H}_{\mathrm{X}}^{*}(\mathrm{mic})+\left[1-\mathrm{x}_{\mathrm{X}}(\mathrm{mic})\right]^{2} \, \mathrm{U}\]

    \[\mathrm{H}_{\mathrm{Y}}(\mathrm{mic})=\mathrm{H}_{\mathrm{Y}}^{*}(\text { mic })+\left[\mathrm{x}_{\mathrm{X}}(\mathrm{mic})\right]^{2} \, \mathrm{U}\]

    Footnotes

    [1] J. H. Clint, J. Chem. Soc. Faraday Trans.,1, 1975,71,1327.

    [2] P. M .Holland, Adv. Colloid Interface Sci.,1986,26,111; and references therein.

    [3] A. H. Roux, D. Hetu, G. Perron and J. E. Desnoyers, J. Solution Chem.,1984,13,1.

    [4] M. J. Hey, J. W. MacTaggart and C. H. Rochester, J. Chem. Soc. Faraday Trans.1, 1985,81,207.

    [5] J. L. Lopez-Fontan, M. J. Suarez, V. Mosquera and F. Sarmiento, Phys. Chem. Chem. Phys.,1999,1,3583.

    [6] R. DeLisi, A. Inglese, S. Milioto and A. Pellerito, Langmuir, 1997,13,192.

    [7] M. J. Blandamer, B. Briggs, P. M. Cullis and J. B. F. N. Engberts, Phys. Chem. Chem. Phys.,2000,2,5146.

    [8] J. F. Rathman and J. F. Scamehorn, Langmuir, 1988,4,474.

    [9] A. H. Roux, D. Hetu, G. Perron and J. E. Desn

    oyers, J. Solution Chem.,1984,13,1.


    This page titled 1.20.5: Surfactants and Micelles: Mixed is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.

    • Was this article helpful?