Skip to main content
Chemistry LibreTexts

1.14.5: Extent of Reaction

  • Page ID
    392427
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    For chemists, chemical reaction is the key thermodynamic process. By definition chemical reaction produces a change in composition of a closed system. The extent of chemical reaction is measured by a quantity \(\mathrm{d}\xi\), where the chemical composition is described by the symbol \(\xi\). An example makes the point.

    An aqueous solution is prepared at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\) contains solute \(\mathrm{X}\). The latter undergoes spontaneous chemical reaction to form chemical substance \(\mathrm{Y}\).

    Thus

      \(\mathrm{X}(\mathrm{aq})\) \(\rightarrow\) \(\mathrm{Y}(\mathrm{aq})\)
    At \(t = 0\) \(\mathrm{n}_{\mathrm{X}}^{0}\)   \(0 \mathrm{~mol}\)
    At time \(t\), \(\mathrm{n}_{\mathrm{X}}^{0}-\xi\)   \(\xi \mathrm{~mol}\)
    Rate of reaction \(= \mathrm{d}\xi / \mathrm{dt}\)    

    [Time is a legitimate thermodynamic property.]

    A key concept states that spontaneous chemical reaction is driven by the affinity for spontaneous change, \(\mathrm{A}\). Then by definition equilibrium corresponds to the state where \(\mathrm{A} = 0\), and \(\mathrm{d}\xi / \mathrm{dt} = 0\).

    General Terms

    For a system containing \(\mathrm{i}\)-chemical substances, the chemical potential of chemical substance \(\mathrm{j}\) is given by equation (a).

    \[\mu_{\mathrm{j}}=\left(\frac{\partial \mathrm{G}}{\partial n_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}, \mathrm{n}(\mathrm{i} \neq \mathrm{j})}\]

    Then,

    \[\mathrm{dG}=-\mathrm{S} \, \mathrm{dT}+\mathrm{V} \, \mathrm{dp}+\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}} \mu_{\mathrm{j}} \, \mathrm{dn} \mathrm{j}_{\mathrm{j}}\]

    But,

    \[\mathrm{dG}=-\mathrm{S} \, \mathrm{dT}+\mathrm{V} \, \mathrm{dp}-\mathrm{A} \, \mathrm{d} \xi\]

    By comparison,

    \[A \, d \xi=-\sum_{j=1}^{j=i} \mu_{j} \, d n_{j}\]

    But \(\mathrm{dn}_{\mathrm{j}}=\mathrm{v}_{\mathrm{j}} \, \mathrm{d} \xi\) where \(\mathrm{ν}_{\mathrm{j}}\) is positive for products and negative for reactants. Hence,

    \[A=-\sum_{j=1}^{j=i} v_{j} \, \mu_{j}\]

    This remarkable equation relates the affinity for chemical reaction \(A\) with the chemical potentials of the chemical substances involved in the chemical reaction. Moreover at equilibrium, \(A\) is zero. Hence,

    \[\sum_{j=1}^{j=i} v_{j} \, \mu_{j}^{e q}=0\]

    We have a condition describing chemical equilibrium in terms of the chemical potentials of reactants and products at equilibrium.


    This page titled 1.14.5: Extent of Reaction is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.

    • Was this article helpful?