Skip to main content
Chemistry LibreTexts

1.12.13: Expansions- Isobaric- Binary Liquid Mixtures

  • Page ID
    377805
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    The isobaric (equilibrium) expansion of a liquid, volume \(\mathrm{V}\), is defined by equation (a).

    \[\mathrm{E}_{\mathrm{p}}=\left(\frac{\partial V}{\partial T}\right)_{p}\]

    Both \(\mathrm{E}_{\mathrm{p}}\) and \(\mathrm{V}\) are extensive properties of a mixture. Therefore it is convenient to refer to the molar property, \(\mathrm{E}_{\mathrm{pm}}(\operatorname{mix})\). Thus

    \[\mathrm{E}_{\mathrm{pm}}(\mathrm{mix})=\left(\frac{\partial \mathrm{V}_{\mathrm{m}}(\mathrm{mix})}{\partial \mathrm{T}}\right)_{\mathrm{p}}\]

    At fixed \(\mathrm{T}\) and \(\mathrm{p}\), \(\mathrm{V}_{\mathrm{m}}(\mathrm{mix})\) for a binary liquid mixture is related to the partial molar volumes of the two components.

    \[\mathrm{V}_{\mathrm{m}}(\operatorname{mix})=\mathrm{x}_{1} \, \mathrm{V}_{1}(\operatorname{mix})+\mathrm{x}_{2} \, \mathrm{V}_{2}(\mathrm{mix})\]

    From equation (b)

    \[\mathrm{E}_{\mathrm{pm}}(\mathrm{mix})=\mathrm{x}_{1} \,\left(\frac{\partial \mathrm{V}_{1}(\mathrm{mix})}{\partial \mathrm{T}}\right)_{\mathrm{p}}+\mathrm{x}_{2} \,\left(\frac{\partial \mathrm{V}_{2}(\mathrm{mix})}{\partial \mathrm{T}}\right)_{\mathrm{p}}\]

    For a binary mixture having molar volume \(\mathrm{V}_{\mathrm{m}}(\mathrm{mix})\) and density \(\rho(\mathrm{mix})\),

    \[\rho(\operatorname{mix})=\left(\mathrm{x}_{1} \, \mathrm{M}_{1}+\mathrm{x}_{2} \, \mathrm{M}_{2}\right) / \mathrm{V}_{\mathrm{m}}(\mathrm{mix})\]

    Here \(\mathrm{M}_{1}\) and \(\mathrm{M}_{2}\) are the molar masses of liquids 1 and 2 respectively.

    \[\mathrm{V}_{\mathrm{m}}(\mathrm{mix})=\left(\mathrm{x}_{1} \, \mathrm{M}_{1}+\mathrm{x}_{2} \, \mathrm{M}_{2}\right) / \rho(\mathrm{mix})\]

    Hence,

    \[\begin{aligned}
    {\left[\partial \mathrm{V}_{\mathrm{m}}(\operatorname{mix}) / \partial \mathrm{T}\right]_{\mathrm{p}} } &=\\
    &-\left[\left(\mathrm{x}_{1} \, \mathrm{M}_{1}+\mathrm{x}_{2} \, \mathrm{M}_{2}\right) / \rho(\operatorname{mix})\right] \,[\partial \ln \{\rho(\operatorname{mix})\} / \partial \mathrm{T}]_{\mathrm{p}}
    \end{aligned}\]

    \(\\mathrm{E}_{\mathrm{pm}}(\mathrm{mix})\) is obtained for a given mixture from the isobaric dependence of density on temperature. There is merit in considering equations for \(\mathrm{E}_{\mathrm{pm}}(\operatorname{mix} ; \mathrm{id})\) of a binary mixture having ideal thermodynamic properties and hence for the related excess molar expansion \(\mathrm{E}_{\mathrm{pm}}^{\mathrm{E}}\). With,

    \[\mathrm{E}_{\mathrm{pm}}(\operatorname{mix} ; \mathrm{id})=\mathrm{x}_{1} \, \mathrm{E}_{1}^{*}(\ell)+\mathrm{x}_{2} \, \mathrm{E}_{2}^{*}(\ell)\]

    \[\mathrm{E}_{\mathrm{pm}}^{\mathrm{E}}=\mathrm{E}_{\mathrm{pm}}(\mathrm{mix})-\mathrm{E}_{\mathrm{pm}}(\mathrm{mix} ; \mathrm{id})\]

    \(\mathrm{E}_{\mathrm{pm}}(\operatorname{mix} ; \mathrm{id})\) is the mole fraction weighted sum of the isobaric expansions of the pure liquid components at the same \(\mathrm{T}\) and \(\mathrm{p}\). The isobaric expansibility of an ideal binary liquid mixture \(\alpha_{p}(\operatorname{mix} ; \mathrm{id})\) is given by equation (j).

    \[\alpha_{\mathrm{p}}(\operatorname{mix} ; \mathrm{id})=\frac{\mathrm{x}_{1} \, \mathrm{E}_{\mathrm{p} 1}^{*}(\ell)+\mathrm{x}_{2} \, \mathrm{E}_{\mathrm{p} 2}^{*}(\ell)}{\mathrm{x}_{1} \, \mathrm{V}_{1}^{*}(\ell)+\mathrm{x}_{2} \, \mathrm{V}_{2}^{*}(\ell)}\]

    Or,

    \[\alpha_{\mathrm{p}}(\operatorname{mix} ; \text { id })=\frac{\mathrm{x}_{1} \, \mathrm{E}_{\mathrm{p} 1}^{*}(\ell)}{\mathrm{x}_{1} \, \mathrm{V}_{1}^{*}(\ell)+\mathrm{x}_{2} \, \mathrm{V}_{2}^{*}(\ell)}+\frac{\mathrm{x}_{2} \, \mathrm{E}_{\mathrm{p} 2}^{*}(\ell)}{\mathrm{x}_{1} \, \mathrm{V}_{1}^{*}(\ell)+\mathrm{x}_{2} \, \mathrm{V}_{2}^{*}(\ell)}\]

    Hence,

    \[\alpha_{\mathrm{p}}(\mathrm{mix} ; \mathrm{id})=\frac{\mathrm{x}_{1} \, \mathrm{V}_{1}^{*}(\ell) \, \alpha_{\mathrm{p} 1}^{*}(\ell)}{\mathrm{x}_{1} \, \mathrm{V}_{1}^{*}(\ell)+\mathrm{x}_{2} \, \mathrm{V}_{2}^{*}(\ell)}+\frac{\mathrm{x}_{2} \, \mathrm{V}_{2}^{*}(\ell) \, \mathrm{E}_{\mathrm{p} 2}^{*}(\ell)}{\mathrm{x}_{1} \, \mathrm{V}_{1}^{*}(\ell)+\mathrm{x}_{2} \, \mathrm{V}_{2}^{*}(\ell)}\]

    Hence, expansibility \(\alpha_{p}(\operatorname{mix} ; 1 \mathrm{~d})\) can be expressed in terms of the volume fractions of the corresponding ideal binary liquid mixture.

    \[\alpha_{p}(\operatorname{mix} ; \text { id })=\phi_{1}(\operatorname{mix} ; \text { id }) \, \alpha_{p 1}^{*}(\ell)+\phi_{2}(\operatorname{mix} ; \text { id }) \, \alpha_{p 2}^{*}(\ell)\]

    The excess (equilibrium) isobaric expansivity \(\alpha_{p}^{E}(\operatorname{mix})\) is given by mix equation (n) [1].

    \[\alpha_{\mathrm{p}}^{\mathrm{E}}(\mathrm{mix})=\frac{1}{\mathrm{~V}_{\mathrm{m}}(\mathrm{mix})} \,\left[\left(\frac{\partial \mathrm{V}_{\mathrm{m}}^{\mathrm{E}}(\mathrm{mix})}{\partial \mathrm{T}}\right)_{\mathrm{p}}-\mathrm{V}_{\mathrm{m}}^{\mathrm{E}} \, \alpha_{\mathrm{p}}(\mathrm{mix} ; \mathrm{id})\right]\]

    From another standpoint the thermal expansion of a binary liquid mixture is analysed in terms of the differential dependence of rational activity coefficients on temperature and pressure. For liquid component 1 at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\),

    \[\mu_{1}(\operatorname{mix})=\mu_{1}^{0}(\ell)+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right)+\int_{\mathrm{p}}^{\mathrm{p}} \mathrm{V}_{1}^{*}(\ell) \, \mathrm{dp}\]

    Then

    \[\mathrm{V}_{1}(\mathrm{mix})=\mathrm{V}_{1}^{*}(\ell)+\mathrm{R} \, \mathrm{T} \,\left[\partial \ln \left(\mathrm{f}_{1}\right) / \partial \mathrm{p}\right]_{\mathrm{T}}\]

    At temperature \(\mathrm{T}\),

    \[\mathrm{E}_{\mathrm{p}_{1}}(\operatorname{mix})=\mathrm{E}_{\mathrm{p} 1}(\operatorname{mix} ; \mathrm{id})+\mathrm{R} \,\left[\partial \ln \left(\mathrm{f}_{1}\right) / \partial \mathrm{p}\right]_{\mathrm{T}}+\mathrm{R} \, \mathrm{T} \,\left[\frac{\partial}{\partial \mathrm{T}}\left(\frac{\partial \ln \left(\mathrm{f}_{1}\right)}{\partial \mathrm{p}}\right)_{\mathrm{T}}\right]_{\mathrm{p}}\]

    \[\begin{aligned}
    &\mathrm{E}_{\mathrm{p} 2}(\operatorname{mix})= \\
    &\quad \mathrm{E}_{\mathrm{p} 2}(\mathrm{mix} ; \mathrm{id})+\mathrm{R} \,\left[\partial \ln \left(\mathrm{f}_{2}\right) / \partial \mathrm{p}\right]_{\mathrm{T}}+\mathrm{R} \, \mathrm{T} \,\left[\frac{\partial}{\partial \mathrm{T}}\left(\frac{\partial \ln \left(\mathrm{f}_{2}\right)}{\partial \mathrm{p}}\right)_{\mathrm{T}}\right]_{\mathrm{p}}
    \end{aligned}\]

    Two equations follow for the excess partial molar isobaric expansions of the components of the mixture.

    \[\mathrm{E}_{\mathrm{p} 1}^{\mathrm{E}}(\mathrm{mix})=\mathrm{R} \,\left[\partial \ln \left(\mathrm{f}_{1}\right) / \partial \mathrm{p}\right]_{\mathrm{T}}+\mathrm{R} \, \mathrm{T} \,\left[\frac{\partial}{\partial \mathrm{T}}\left(\frac{\partial \ln \left(\mathrm{f}_{1}\right)}{\partial \mathrm{p}}\right)_{\mathrm{T}}\right]_{\mathrm{p}}\]

    \[E_{\mathrm{p} 2}^{\mathrm{E}}(\mathrm{mix})=\mathrm{R} \,\left[\partial \ln \left(\mathrm{f}_{2}\right) / \partial \mathrm{p}_{\mathrm{T}}+\mathrm{R} \, \mathrm{T} \,\left[\frac{\partial}{\partial \mathrm{T}}\left(\frac{\partial \ln \left(\mathrm{f}_{2}\right)}{\partial \mathrm{p}}\right)_{\mathrm{T}}\right]_{\mathrm{p}}\right.\]

    Therefore for the mixture,

    \[\mathrm{E}_{\mathrm{pm}}^{\mathrm{E}}(\mathrm{mix})=\mathrm{x}_{1} \, \mathrm{E}_{\mathrm{p} 1}^{\mathrm{E}}(\mathrm{mix})+\mathrm{x}_{2} \, \mathrm{E}_{\mathrm{p} 2}^{\mathrm{E}}(\mathrm{mix})\]

    Footnotes

    [1] For a binary liquid mixture at defined \(\mathrm{T}\) and \(\mathrm{p}\),

    \[\mathrm{V}_{\mathrm{m}}(\operatorname{mix})=\mathrm{V}_{\mathrm{m}}(\mathrm{mix} ; \mathrm{id})+\mathrm{V}_{\mathrm{m}}^{\mathrm{E}}\]

    \[\alpha_{p}(\operatorname{mix})=\frac{1}{V_{m}(\operatorname{mix})} \, \frac{\partial}{\partial T}\left[V_{m}(\text { mix } ; 1 \mathrm{~d})+V_{m}^{E}\right]\]

    Or, \(\alpha_{p}(\operatorname{mix})=\frac{1}{V_{m}(\operatorname{mix})} \, \frac{\partial \mathrm{V}_{\mathrm{m}}(\mathrm{mix} ; \mathrm{id})}{\partial \mathrm{T}}+\frac{1}{\mathrm{~V}_{\mathrm{m}}(\mathrm{mix})} \, \frac{\partial \mathrm{V}_{\mathrm{m}}^{\mathrm{E}}}{\partial \mathrm{T}}\)

    But, \(\alpha_{p}(\operatorname{mix} ; \mathrm{id})=\frac{1}{\mathrm{~V}_{\mathrm{m}}(\mathrm{mix} ; \mathrm{id})} \, \frac{\partial \mathrm{V}_{\mathrm{m}}(\mathrm{mix} ; \mathrm{id})}{\partial \mathrm{T}}\)

    By definition,

    \[\begin{aligned}
    &\alpha_{p}^{E}=\alpha_{p}(\operatorname{mix})-\alpha_{p}(\operatorname{mix} ; \text { id })\\
    &\alpha_{p}^{E}(\operatorname{mix})=\left[\frac{1}{V_{m}(\operatorname{mix})}-\frac{1}{V_{m}(\operatorname{mix} ; i \mathrm{~d})}\right] \, \frac{\partial V_{m}(\operatorname{mix} ; \mathrm{id})}{\partial \mathrm{T}}+\frac{1}{\mathrm{~V}_{\mathrm{m}}(\mathrm{mix})} \, \frac{\partial \mathrm{V}_{\mathrm{m}}^{\mathrm{E}}}{\partial \mathrm{T}}\\
    &\alpha_{p}^{\mathrm{E}}(\operatorname{mix})=\left[\frac{\mathrm{V}_{\mathrm{m}}(\mathrm{mix} ; \mathrm{id})-\mathrm{V}_{\mathrm{m}}(\mathrm{mix})}{\mathrm{V}_{\mathrm{m}}(\mathrm{mix}) \, \mathrm{V}_{\mathrm{m}}(\mathrm{mix} ; \mathrm{id})}\right] \, \frac{\partial \mathrm{V}_{\mathrm{m}}(\mathrm{mix} ; \mathrm{id})}{\partial \mathrm{T}}+\frac{1}{\mathrm{~V}_{\mathrm{m}}(\operatorname{mix})} \, \frac{\partial \mathrm{V}_{\mathrm{m}}^{\mathrm{E}}}{\partial \mathrm{T}}\\
    &\alpha_{\mathrm{p}}^{\mathrm{E}}(\operatorname{mix})=-\left[\frac{\mathrm{V}_{\mathrm{m}}^{\mathrm{E}}}{\mathrm{V}_{\mathrm{m}}(\mathrm{mix})}\right] \, \alpha_{\mathrm{p}}(\mathrm{mix} ; \mathrm{id})+\frac{1}{\mathrm{~V}_{\mathrm{m}}(\mathrm{mix})} \, \frac{\partial \mathrm{V}_{\mathrm{m}}^{\mathrm{E}}}{\partial \mathrm{T}}
    \end{aligned}\]

    Hence,

    \[\alpha_{p}^{E}(\operatorname{mix})=\frac{1}{V_{m}(\operatorname{mix})} \,\left[\left(\frac{\partial V_{m}^{E}}{\partial T}\right)_{p}-V_{m}^{E} \, \alpha_{p}(\operatorname{mix} ; \text { id })\right]\]


    This page titled 1.12.13: Expansions- Isobaric- Binary Liquid Mixtures is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.