Skip to main content
Chemistry LibreTexts

1.12.11: Expansions- Isobaric- Apparent Molar- Neutral Solutes

  • Page ID
    377803
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    For many aqueous solutions at ambient pressure and temperature, the dependence of \(\phi\left(\mathrm{E}_{\mathrm{pj}}\right)\) on molality of a neutral solute \(j\), \(\mathrm{m}_{j}\) is accounted for by an equation having the following general form. [The reason for choosing the molality scale is again the fact that \(\mathrm{m}_{j}\) is independent of \(\mathrm{T}\) and \(\mathrm{p}\) but concentration \(\mathrm{c}_{j}\) is not.]

    \[\phi\left(E_{p j}\right)=a_{1}+a_{2} \,\left(m_{j} / m^{0}\right)+a_{3} \,\left(m_{j} / m^{0}\right)^{2}+a_{4} \,\left(m_{j} / m^{0}\right)^{3}+\ldots \nonumber \]

    At low molalities, the linear term is dominant. Granted therefore that equation(a) accounts for the observed pattern, we need a quantitative description which accounts for this pattern. There are advantages in linking directly the apparent property \(\phi\left(\mathrm{E}_{\mathrm{pj}}\right)\) and the partial molar property \(\mathrm{E}_{\mathrm{pj}}(\mathrm{aq})\).

    For an aqueous solution at fixed temperature and pressure,

    \[\mathrm{E}_{\mathrm{pj}}(\mathrm{aq})=\mathrm{m}_{\mathrm{j}} \,\left(\frac{\partial \phi\left(\mathrm{E}_{\mathrm{pj}}\right)}{\partial \mathrm{m}_{\mathrm{j}}}\right)+\phi\left(\mathrm{E}_{\mathrm{pj}}\right) \nonumber \]

    Hence the partial molar isobaric expansion of solute \(j\) can be calculated from the apparent molar isobaric expansion and its dependence on molality, \(\mathrm{m}_{j}\). Hence if equation (a) satisfactorily describes the observed dependence of \(\phi\left(E_{p j}\right)\) on \(\mathrm{m}_{j}\),

    \[\mathrm{E}_{\mathrm{pj}}(\mathrm{aq})=\mathrm{a}_{1}+2 \, \mathrm{a}_{2} \,\left(\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right)+3 \, \mathrm{a}_{3} \,\left(\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right)^{2}+\ldots \nonumber \]

    Therefore,

    \[\operatorname{limit}\left(\mathrm{m}_{\mathrm{j}} \rightarrow 0\right) \mathrm{E}_{\mathrm{pj}}(\mathrm{aq})=\operatorname{limit}\left(\mathrm{m}_{\mathrm{j}} \rightarrow 0\right) \phi \mathrm{E}_{\mathrm{pj}}(\mathrm{aq})=\mathrm{E}_{\mathrm{pj}}^{\infty}(\mathrm{aq})=\phi\left(\mathrm{E}_{\mathrm{pj}}\right)^{\infty} \nonumber \]

    Consequently the parameter \(\mathrm{a}_{1}\) in equations (a) and (b) is the limiting partial molar isobaric expansion of solute \(j\). For dilute solutions, equation (c) takes the following simple form.

    \[\mathrm{E}_{\mathrm{pj}}(\mathrm{aq})=\mathrm{E}_{\mathrm{pj}}^{\infty}(\mathrm{aq})+\mathrm{R} \, \mathrm{S}_{\mathrm{Ep}} \,\left(\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right) \nonumber \]

    In these terms we can identify the basis of the parameter \(\mathrm{a}_{2}\) in equations (a) and (c). Desrosiers et al [1] used a quadratic (cf. equation (a)) to express the dependence of \(\phi\left(\mathrm{E}_{\mathrm{pj}}\right)\) at \(298 \mathrm{~K}\) on molality of urea in aqueous solutions; \(\phi\left(\mathrm{E}_{\mathrm{pj}}\right)=0.07 \mathrm{~cm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\), coefficient \(\mathrm{a}_{2}\) being positive and coefficient \(\mathrm{a}_{3}\) being negative.

    The majority of published information concerns the dependence on temperature of \(\phi\left(\mathrm{V}_{\mathrm{j}}\right)^{\infty}\). A survey [2] based on a dilatometric study of 15 non-electrolytes in aqueous solution indicates that \(\left[\mathrm{d} \phi\left(\mathrm{V}_{\mathrm{j}}\right)^{\infty} / \mathrm{dT}\right]\) is less than \(\left[\mathrm{dV}_{\mathrm{j}}^{*}(\ell) / \mathrm{dT}\right]\) for the pure liquid substance \(j\); the second derivative \(\left[\mathrm{d}^{2} \phi\left(\mathrm{V}_{\mathrm{j}}\right)^{\infty} / \mathrm{dT}^{2}\right]\) is positive. However for hydrophilic solutes \(\left[\mathrm{d} \phi\left(\mathrm{V}_{\mathrm{j}}\right)^{\infty} / \mathrm{dT}\right]\) is larger than \(\left[\mathrm{dV}_{\mathrm{j}}^{*}(\ell) / \mathrm{dT}\right]\) and \(\left[\mathrm{d}^{2} \phi\left(\mathrm{V}_{\mathrm{j}}\right)^{\infty} / \mathrm{dT}^{2}\right]\) is negative [3]. A similar pattern is observed for sucrose and urea for which \(\left[\mathrm{d}^{2} \phi\left(\mathrm{V}_{\mathrm{j}}\right)^{\infty} / \mathrm{dT}^{2}\right]\) is negative. Indeed Hepler [4] classified solutes in aqueous solutions as either structure-breaking (negative) or structure forming (positive) on the basis of the sign for \(\left[\mathrm{d}^{2} \phi\left(\mathrm{V}_{\mathrm{j}}\right)^{\infty} / \mathrm{dT}^{2}\right]\). The dependence of \(\phi\left(V_{j}\right)^{\infty}\) on temperature for both glycine and alanine in \(\mathrm{NaCl}(\mathrm{aq})\) is small [5], For monosacchrides(aq) \(\mathrm{E}_{\mathrm{pj}}^{\infty}(\mathrm{aq})\) is positive.

    Footnotes

    [1] N. Desrosiers, G. Perron, J. G. Mathieson, B. E. Conway and J. E. Desnoyers, J Solution Chem.,1974,3,789.

    [2] J. I. Neal and D. A. I. Goring, J. Phys. Chem.,1970,74,658.

    [3] J. Sengster, T.-T. Ling and F. Lenzi, J Solution Chem,1976,5,575.

    [4] L.G. Hepler, Can J.Chem.,1969,47,4613.

    [5] B. S. Lark, K.Balat and S. Singh, Indian J Chem., Sect A,25,534.

    [6] S. Paljk, K. Balat and S. Singh, J. Chem. Eng Data, 1990,35.41.


    This page titled 1.12.11: Expansions- Isobaric- Apparent Molar- Neutral Solutes is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.