Skip to main content
Chemistry LibreTexts

1.12.8: Expansions- Solutions- Isobaric- Partial and Apparent Molar

  • Page ID
    377791
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    The volume of a given aqueous solution containing \(\mathrm{n}_{1}\) moles of water and \(\mathrm{n}_{j}\) moles of solute \(j\) is related to the composition by equation (a).

    \[\mathrm{V}(\mathrm{aq})=\mathrm{n}_{1} \, \mathrm{V}_{1}(\mathrm{aq})+\mathrm{n}_{\mathrm{j}} \, \mathrm{V}_{\mathrm{j}}(\mathrm{aq})\]

    \(\mathrm{V}_{1}(\mathrm{aq})\) and \(\mathrm{V}_{j}(\mathrm{aq})\) are the partial molar volumes of water and solute \(j\) respectively. The (equilibrium) isobaric thermal expansion of the solution (at fixed pressure) \(\mathrm{E}_{\mathrm{p}}\) characterises the differential dependence of \(\mathrm{V}(\mathrm{aq})\) on temperature.

    \[\mathrm{E}_{\mathrm{p}}(\mathrm{aq})=[\partial \mathrm{V}(\mathrm{aq}) / \partial \mathrm{T}]_{\mathrm{p}, \mathrm{A}=0}\]

    \(\mathrm{E}_{\mathrm{p}}(\mathrm{aq})\) is an extensive property of the solution [1]. Two partial molar isobaric thermal expansions are defined, characteristic of solute and solvent [2].

    \[\mathrm{E}_{\mathrm{p} 1}(\mathrm{aq})=\left(\partial \mathrm{V}_{1}(\mathrm{aq}) / \partial \mathrm{T}\right)_{\mathrm{p}}\]

    \[\mathrm{E}_{\mathrm{pj}}(\mathrm{aq})=\left(\partial \mathrm{V}_{\mathrm{j}}(\mathrm{aq}) / \partial \mathrm{T}\right)_{\mathrm{p}}\]

    From equation (a),

    \[\mathrm{E}_{\mathrm{p}}(\mathrm{aq})=\mathrm{n}_{1} \, \mathrm{E}_{\mathrm{p} 1}(\mathrm{aq})+\mathrm{n}_{\mathrm{j}} \, \mathrm{E}_{\mathrm{pj}}(\mathrm{aq})\]

    In the treatment of volumetric properties of solutions we define an apparent molar volume of the solute, \(\phi\left(\mathrm{V}_{\mathrm{j}}\right)\). By analogy we rewrite equation (e) in a form which defines the apparent molar isobaric expansion of the solute, \(\phi\left(\mathrm{E}_{\mathrm{j}}\right)\). Thus,

    \[\mathrm{E}_{\mathrm{p}}(\mathrm{aq})=\mathrm{n}_{1} \, \mathrm{E}_{\mathrm{p} 1}^{*}(\ell)+\mathrm{n}_{\mathrm{j}} \, \phi\left(\mathrm{E}_{\mathrm{pj}}\right)\]

    Here [3],

    \[\phi\left(\mathrm{E}_{\mathrm{pj}}\right)=\left(\frac{\partial \phi\left(\mathrm{V}_{\mathrm{j}}\right)}{\partial \mathrm{T}}\right)_{\mathrm{p}}\]

    For the pure solvent,

    \[\mathrm{E}_{\mathrm{p} 1}^{*}(\ell)=\left(\frac{\partial \mathrm{V}_{1}^{*}(\ell)}{\partial \mathrm{T}}\right)_{\mathrm{p}}\]

    Footnotes

    [1] \(\mathrm{E}_{\mathrm{p}}\) is an extensive property; the larger the volume \(\mathrm{V}\) the larger the change in volume for a given increase in temperature.

    [2] \(E_{p}=\left[m^{3} K^{-1}\right] \quad E_{p 1}=\left[\mathrm{m}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right] \quad E_{p j}=\left[\mathrm{m}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right]\)

    [3] \(\phi\left(\mathrm{E}_{\mathrm{j}}\right)=\left[\mathrm{m}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right]\)


    This page titled 1.12.8: Expansions- Solutions- Isobaric- Partial and Apparent Molar is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.