Skip to main content
Chemistry LibreTexts

1.12.5: Heat Capacity- Isobaric- Solutions- Excess

  • Page ID
    386473
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A given solution is prepared using \(1 \mathrm{~kg}\) of solvent (water) and \(\mathrm{m}_{j}\) moles of solute \(j\). If the thermodynamic properties of this solution are ideal, the isobaric heat capacity can be expressed as follows [1].

    \[\mathrm{C}_{\mathrm{p}}\left(\mathrm{aq} ; \mathrm{id} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)=\left(1 / \mathrm{M}_{1}\right) \, \mathrm{C}_{\mathrm{p} 1}^{*}(\ell)+\mathrm{m}_{\mathrm{j}} \, \mathrm{C}_{\mathrm{pj}}^{\infty}(\mathrm{aq}) \nonumber \]

    On the other hand for a real solution the isobaric heat capacity can be expressed in terms of the apparent molar heat capacity of the solute, \(\phi \left(\mathrm{C}_{\mathrm{pj}}\right)\).

    \[\mathrm{C}_{\mathrm{p}}\left(\mathrm{aq} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)=\left(1 / \mathrm{M}_{1}\right) \, \mathrm{C}_{\mathrm{pl}}^{*}(\ell)+\mathrm{m}_{\mathrm{j}} \, \phi\left(\mathrm{C}_{\mathrm{pj}}\right) \nonumber \]

    The difference between \(\mathrm{C}_{\mathrm{p}}\left(\mathrm{aq} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)\) and \(\mathrm{C}_{\mathrm{p}}\left(\mathrm{aq} ; \mathrm{id} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)\) defines the relative isobaric heat capacity of the solution \(\mathrm{J}\), an excess property.

    \[\mathrm{J}(\mathrm{aq})=\mathrm{C}_{\mathrm{p}}\left(\mathrm{aq} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)-\mathrm{C}_{\mathrm{p}}\left(\mathrm{aq} ; \mathrm{id} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right) \nonumber \]

    Thermodynamics does not define the magnitude or sign of \(\mathrm{J}(\mathrm{aq})\). However, from the definitions of ideal and real partial molar isobaric capacities of solvent and solute, the following condition must hold.

    \[\operatorname{limit}\left(\mathrm{m}_{\mathrm{j}} \rightarrow 0\right) \mathrm{J}(\mathrm{aq})=0 \nonumber \]

    Relative quantities can also be defined for solute and solvent.

    \[\mathrm{J}_{j}(\mathrm{aq})=\mathrm{C}_{\mathrm{pj}}(\mathrm{aq})-\mathrm{C}_{\mathrm{pj}}^{\infty}(\mathrm{aq}) \nonumber \]

    \[\mathrm{J}_{1}(\mathrm{aq})=\mathrm{C}_{\mathrm{p} 1}(\mathrm{aq})-\mathrm{C}_{\mathrm{p} 1}^{*}(\ell) \nonumber \]

    Also,

    \[\phi\left(\mathrm{J}_{\mathrm{j}}\right)=\phi\left[\mathrm{C}_{\mathrm{pj}}(\mathrm{aq})\right]-\mathrm{C}_{\mathrm{pj}}^{\infty}(\mathrm{aq}) \nonumber \]

    Hence,

    \[\operatorname{limit}\left(\mathrm{m}_{\mathrm{j}} \rightarrow 0\right) \mathrm{J}_{\mathrm{j}}(\mathrm{aq})=\mathrm{J}_{1}(\mathrm{aq})=\phi\left(\mathrm{J}_{\mathrm{j}}\right)=0 \nonumber \]

    Equation (c) defines a property \(\mathrm{J}\) which is an excess isobaric heat capacity of a solution prepared using \(1 \mathrm{~kg}\) of water. Thus,

    \[\mathrm{C}_{\mathrm{p}}^{\mathrm{E}}\left(\mathrm{aq} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)=\mathrm{J}(\mathrm{aq})=\mathrm{C}_{\mathrm{p}}\left(\mathrm{aq} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)-\mathrm{C}_{\mathrm{p}}\left(\mathrm{aq} ; \mathrm{id} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right) \nonumber \]

    From equations (a) and (b),

    \[\mathrm{C}_{\mathrm{p}}^{\mathrm{E}}\left(\mathrm{aq} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)=\mathrm{m}_{\mathrm{j}} \,\left[\phi\left(\mathrm{C}_{\mathrm{pj}}\right)-\mathrm{C}_{\mathrm{pj}}^{\infty}(\mathrm{aq})\right] \nonumber \]

    From equation (g),

    \[\mathrm{C}_{\mathrm{p}}^{\mathrm{E}}\left(\mathrm{aq} ; \mathrm{w}_{1}=1 \mathrm{~kg}\right)=\mathrm{m}_{\mathrm{j}} \, \phi\left(\mathrm{J}_{\mathrm{j}}\right) \nonumber \]

    Thus \(\phi \left(\mathrm{J}_{j}\right)\) is the relative apparent molar isobaric heat capacity of the solute in a given real solution. Isobaric heat capacities of solutions and related partial molar isobaric heat capacities reflect in characteristic fashion the impact of added solutes on water water interactions

    Footnote

    [1] \(\left[\mathrm{J} \mathrm{K}^{-1} \mathrm{~kg}^{-1}\right]=\left[\mathrm{kg} \mathrm{mol}^{-1}\right]^{-1} \,\left[\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right]+\left[\mathrm{mol} \mathrm{kg}^{-1}\right] \,\left[\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right]\)


    This page titled 1.12.5: Heat Capacity- Isobaric- Solutions- Excess is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.