Skip to main content
Chemistry LibreTexts

1.10.11: Gibbs Energies- Solutions- Solute-Solute Interactions- Pairwise

  • Page ID
    381288
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Analysis of the thermodynamic properties of aqueous solutions was taken a step further by Savage and Wood who envisage two solute molecules A and B in aqueous solution [1]. The total pairwise interaction between these molecules is described in terms of pairwise group-group interaction parameters. Then, for example, the pairwise enthalpic solute-solute interaction parameter \(\mathrm{H}_{\mathrm{AB}\) is written as the sum of products, \(\mathrm{n}_{\mathrm{i}}^{\mathrm{A}} \, \mathrm{n}_{\mathrm{j}}^{\mathrm{B}} \, \mathrm{h}_{\mathrm{ij}}\) where \(\mathrm{n}_{\mathrm{i}}^{\mathrm{A}}\) is the number of A-groups in solute molecule \(\mathrm{i}\) and \(\mathrm{n}_{\mathrm{j}}^{\mathrm{B}}\) is the number of B-groups in solute molecule \(\mathrm{j}\) where \(\mathrm{h}_{\mathrm{ij}}\) is a pairwise enthalpic group interaction parameter. A similar analysis is carried out for interaction Gibbs energies leading to pairwise Gibbs energy parameters \(\mathrm{g}_{\mathrm{ij}}\). So, for example, \(\mathrm{g}(\mathrm{OH}-\mathrm{OH})\) is negative characteristic of a hydrophilic-hydrophilic interaction. Whereas \(\mathrm{g}\left(\mathrm{OH}-\mathrm{CH}_{2}\right)\) is positive indicating 'repulsion' within hydrophobic-hydrophilic pairs. Interestingly \(\mathrm{g}\left(\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)\) is negative" which is indicative of a hydrophobic-hydrophobic attraction (cf. hydrophobic bonding); the corresponding enthalpic pairwise parameter is positive. Thus it is tempting to speculate that hydrophobic attraction is entropy driven [2]; for further comments see references [3-13].

    The general approach is readily extended to a consideration of pairwise interactions between added solutes and both initial and transitions states for given chemical reactions in aqueous solution [14-18].

    Footnotes

    [1] J.J. Savage and R. H. Wood, J. Solution Chem.,1976,5,733.

    [2] J.J. Spitzer, S. K. Suri and R. H. Wood, J. Solution Chem.,1985,14,5; and references therein.

    [3] S. K. Suri and R. H. Wood, J. Solution Chem.,1986,15,705.

    [4] S. K. Suri, J.J.Spitzer, R. H. Wood, E.G.Abel and P.T. Thompson, J. Solution Chem.,1986,14,781.

    [5] A. L. Harris, P. T. Thompson and R. H. Wood, J. Solution Chem.,1980, 9,305.

    [6] For the role of solute stereochemistry see F. Franks and M. D. Pedley, J. Chem. Soc. Faraday Trans. 1, 1983,79,2249.

    [7] Amides in N,N-dimethvl formamide: M. Bloemendal and G. Somsen, J. Solution Chem.,1983,12,83.

    [8] Solutions in DMF with a modification of the role of the solvent; M. Bloemendal and G. Somsen, J. Solution Chem.,1987,16,367

    [9] Interaction between amides and urea in aqueous solution; P. J. Cheek and T. H. Lilley, J. Chem. Soc. Faraday Trans.1, 1988,84,1927.

    [10]

    1. Diols(aq); S. Andini, G. Castronuovo, V. Ella and L. Fasano, J. Chem. Soc. Faraday Trans.. 1990. 86, 3567.
    2. Amino acids and peptides; T H. Lilley and R. P. Scott, J. Chem. Soc. Faraday Trans. 1, 1976,72,359.
    3. Monosaccharides(aq); G. Barone, G. Castronuovo, D. Doucas, V.Elia and G. A. Mattia, J.Phys.Chem.,1983,87,1931.

    [11] Urea and polyols(aq); G. Barone, V. Elia and E. Rizzo, J. Solution Chem.,1982,11,687.

    [12] Volumes and heat capacities of aromatic solutes(aq); S. Cabani, P. Gianni,V. Mollica and L. Lepori, J. Solution Chem., 1981,10,563.

    [13] Small peptides(aq); enthalpies; O. V. Kulikov, A. Zielenkiewicz, W. Zielenkiewicz. V. G. Badelin and A.Krestov , J. Solution Chem., 1993,22,59.

    [14] M. J. Blandamer, J. Burgess, I . M. Horn, J. B. F. N. Engberts and P. Warrick Jr., Colloids and Surfaces, 1990,48,139.

    [15] M. J. Blandamer, J. Burgess, J. B. F. N. Engberts and W. Blokzijl, Annu. Rep. Prog. Chem., Sect C, Phys. Chem.,1990,87,45.

    [16] W. Blokzijl, J. B. F. N. Engberts, J. Jager and M. J. Blandamer, J. Phys. Chem.,1987, 91,6022.

    [17] M. J. Blandamer, J. Burgess and J. B. F. N. Engberts, Chem. Soc Rev.,1985,14,237.

    [18] M. J. Blandamer and J. Burgess, Pure Appl. Chem.,1982, 54,2285.


    This page titled 1.10.11: Gibbs Energies- Solutions- Solute-Solute Interactions- Pairwise is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.