Skip to main content
Chemistry LibreTexts

1.10.9: Gibbs Energies- Solutes- Cospheres

  • Page ID
    381285
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The chemical potential of solute \(j\) in aqueous solution, molality \(\mathrm{m}_{j}\), at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\) (which is close to ambient) is given by equation (a).

    \[\mu_{\mathrm{j}}(\mathrm{aq})=\mu_{\mathrm{j}}^{0}(\mathrm{aq})+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{m}_{\mathrm{j}} \, \gamma_{\mathrm{j}} / \mathrm{m}^{0}\right)\]

    In developing an understanding the of factors which contribute to \(\mu_{\mathrm{j}}(\mathrm{aq})\), a model for solutions developed by Gurney is often helpful [1].

    A co-sphere is identified around each solute molecule \(j\) where the organization of solvent molecules differs from that in the bulk solvent at the same \(\mathrm{T}\) and \(\mathrm{p}\). In a solution where the thermodynamic properties of the solute \(j\) are ideal, there are no solute-solute interactions such that the activity coefficient \(\gamma_{j}\) is unity. In real solutions the fact that \(\gamma_{j} \neq 1\) can be understood in terms of co-sphere---co-sphere interactions together for salt solutions strong charge-charge interactions.

    The model [2] identifies two zones. Zone A describes solvent molecules close to the solute molecule, the number of such solvent molecules being the primary hydration number. Zone B describes the solvent molecules outside Zone A. Their organization differs from that in the bulk solvent as a consequence of the presence of solute molecule (or, ion) \(j\). Zone C lies beyond zone B where the organization of solvent is effectively the same as that in pure solvent at the same \(\mathrm{T}\) and \(\mathrm{p}\). There is merit in not being too pedantic concerning the definitions of zones A, B and C.

    For real solutions co-sphere----co-sphere interactions are accounted for using for example the term \(\left[\partial \ln \left(\gamma_{\mathrm{j}}\right) / \partial \mathrm{p}\right]_{\mathrm{T}}\) in the equation describing the partial molar volume \(\mathrm{V}_{\mathrm{j}}(\mathrm{aq})\) for solute \(j\) in a real solution.

    Footnotes

    [1] R. W. Gurney, Ionic Processes in Solution, McGraw-Hill, New York, 1953.

    [2] H. S. Frank and W.-Y. Wen, Discuss. Faraday Trans.,1957,24,756.


    This page titled 1.10.9: Gibbs Energies- Solutes- Cospheres is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.