Skip to main content
Chemistry LibreTexts

1.10.7: Gibbs Energies- Solutions- Parameters Phi and ln(gamma)

  • Page ID
    380036
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The practical osmotic coefficient can be calculated knowing the dependence of \(\gamma_{\mathrm{j}}\) on molality of solute \(j\). Of course at this stage we do not know the form of the dependence of \(\gamma_{\mathrm{j}}\) on \(\mathrm{m}_{\mathrm{j}}\). In fact \(\gamma_{\mathrm{j}}\) also depends on the solute, temperature and pressure. But for a given system (at fixed \(\mathrm{T}\) and \(\mathrm{p}\)) we might express \(\phi\) as a series expansion of the molality \(\mathrm{m}_{\mathrm{j}}\). Thus,

    \[\phi=1+a_{1} \, m_{j}+a_{2} \, m_{j}^{2}+a_{3} \, m_{j}^{3}+\ldots \ldots \nonumber \]

    Interestingly this assumed dependence is equivalent to a series expansion in mole fraction of solute \(\mathrm{x}_{\mathrm{j}}\) for \(1 \mathrm{nf}_{1}\), where \(\mathrm{f}_{1}\) is the (rational) activity coefficient for the solvent [1,2].

    \[\operatorname{lnf}_{1}=\mathrm{b}_{1} \, \mathrm{x}_{\mathrm{j}}^{2}+\mathrm{b}_{1} \, \mathrm{x}_{\mathrm{j}}^{3}+\mathrm{b}_{3} \, \mathrm{x}_{\mathrm{j}}^{4}+\ldots \ldots \nonumber \]

    Here \(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3} \ldots\) depend on the solute (for given \(\mathrm{T}\) and \(\mathrm{p}\)). The link between the two equations can be expressed as follows.

    \[\mathrm{b}_{1}=-\left[(1 / 2)+\mathrm{M}_{1}^{-1} \, \mathrm{a}_{1}\right] \nonumber \]

    \[\mathrm{b}_{2}=-\left[(2 / 3)+2 \, \mathrm{M}_{1}^{-1} \, \mathrm{a}_{1}+\mathrm{M}_{1}^{-2} \, \mathrm{a}_{2}\right] \nonumber \]

    \[\mathrm{b}_{3}=-\left[(3 / 4)+3 \, \mathrm{M}_{1}^{-1} \, \mathrm{a}_{1}+3 \, \mathrm{M}_{1}^{-2} \, \mathrm{a}_{2}+\mathrm{a}_{3} \, \mathrm{M}_{1}^{-3}\right] \nonumber \]

    Footnotes

    [1] J. J. Kozak, W. S. Knight and W. Kauzmann, J. Chem. Phys., 1968,48, 675.

    [2] By definition, for a solution j in solvent, chemical substance 1,

    \[\mathrm{x}_{\mathrm{j}}=\mathrm{m}_{\mathrm{j}} /\left(\mathrm{M}_{\mathrm{l}}^{-1}+\mathrm{m}_{\mathrm{j}}\right) \nonumber \]

    where \(\mathrm{M}_{1}\) is the molar mass of solvent expressed in \(\mathrm{kg mol}^{-1}\). Hence molality of solute \(j\),

    \[\mathrm{m}_{\mathrm{j}}=\mathrm{x}_{\mathrm{j}} \, \mathrm{M}_{\mathrm{l}}^{-1} \,\left(1-\mathrm{x}_{\mathrm{j}}\right)^{-1} \nonumber \]

    We expand \(\left(1-x_{j}\right)^{-1}\) based on the premise that \(0<\mathrm{x}_{\mathrm{j}}<<1.0\) for dilute solutions. Then,

    \[\mathrm{m}_{\mathrm{j}}=\mathrm{x}_{\mathrm{j}} \mathrm{M}_{1}^{-1} \,\left[1+\mathrm{x}_{\mathrm{j}}+\mathrm{x}_{\mathrm{j}}^{2}+\mathrm{x}_{\mathrm{j}}^{3}+\ldots \ldots\right] \nonumber \]

    or, m x j jj jj M x x x = ⋅+ + ++ − 1 1 234 [ .....] (d)

    Here we carry all terms up to and including the fourth power of xj. But from the two methods for relating µ1(aq) to the composition of a solution, 1nx f M m 11 1 j ( ) ⋅ =−⋅ ⋅ φ (e)

    Then, 1 1 11 1 1 2 2 3 3 nx f M m m m m j jjj ( ) [ .....] ⋅ =− ⋅ ⋅ + ⋅ + ⋅ + ⋅ + a a a (f)

    or, 1 11 1 11 2 2 3 3 4 nf n M m m m m j jj j j x a a a =− − − ⋅ + ⋅ + ⋅ + ⋅ + ( ) [ .....] (g)

    But for dilute solutions, −− =+ + + 11 2 3 4 2 34 nx x x x j jj j j ( ) ( /) ( /) ( /) x (h)

    Using equation (c) for mj as a function of xj in the context of equation (f), we obtain an equation for ln(f1). 1 234 1 2 34 nf x x x jj j j ( ) ( /) ( /) ( /) x =+ + + −− − − xxxx jj jj 234 1 4 j 1 1 1 3 j 1 1 1 2 j 1 1 − M ⋅ x ⋅ a − 2 ⋅ M ⋅ x ⋅ a − 3⋅ M ⋅ x ⋅ a − − − − ⋅ ⋅ −⋅ ⋅ ⋅ − − M xa M xa 1 j j 2 3 2 1 2 4 2 3 − ⋅⋅ − M xa 1 j 3 4 3 (i)

    Hence, 1n(f1) = { [( / ) ( )] } − +⋅ ⋅ − 1 2 1 1 1 2 a M x j } { [(2 / 3) (2 a M ) (a M )] x3 j 2 2 1 1 1 1 + − + ⋅ ⋅ + ⋅ ⋅ − − +− + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ − −− { [ / ) ( ) ( ) ( )] } 34 3 3 1 1 1 2 1 2 3 1 3 4 aM aM aM x j (j)


    This page titled 1.10.7: Gibbs Energies- Solutions- Parameters Phi and ln(gamma) is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.