Skip to main content
Chemistry LibreTexts

1.10.3: Gibbs Energies- Solutions- Solvent and Solute

  • Page ID
    379744
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A given solution (at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\), where the latter is close to the standard pressure) is prepared using \(1 \mathrm{~kg}\) of water and \(\mathrm{m}_{\mathrm{j}}\) moles of a simple solute. We consider the differential dependence of the excess Gibbs energy for the solution \(\mathrm{G}^{\mathrm{E}}\) on molality \(\mathrm{m}_{\mathrm{j}}\).

    \[\mathrm{G}_{\mathrm{m}}^{\mathrm{E}}=\mathrm{R} \, \mathrm{T} \, \mathrm{m}_{\mathrm{j}} \,\left[1-\phi+\ln \left(\gamma_{\mathrm{j}}\right)\right] \nonumber \]

    Hence, at fixed \(\mathrm{T}\) and \(\mathrm{p}\),

    \[\begin{aligned}
    (1 / \mathrm{R} \, \mathrm{T}) \,\left[\mathrm{dG}^{\mathrm{E}} / \mathrm{dm}_{\mathrm{j}}\right]=\left[1-\phi+\ln \left(\gamma_{\mathrm{j}}\right)\right]-\mathrm{m}_{\mathrm{j}} \,\left[\mathrm{d} \phi / \mathrm{dm}_{\mathrm{j}}\right] \\
    &+\mathrm{m}_{\mathrm{j}} \,\left[\mathrm{d} \ln \left(\gamma_{\mathrm{j}}\right) / \mathrm{dm}_{\mathrm{j}}\right]
    \end{aligned} \nonumber \]

    But according to the Gibbs-Duhem equation,

    \[-\phi-\mathrm{m}_{\mathrm{j}} \,\left[\mathrm{d} \phi / \mathrm{dm}_{\mathrm{j}}\right]+1+\mathrm{m}_{\mathrm{j}} \,\left[\mathrm{d} \ln \left(\gamma_{\mathrm{j}}\right) / \mathrm{dm}_{\mathrm{j}}\right]=0 \nonumber \]

    Hence, we obtain an equation for \(\ln \left(\gamma_{j}\right)\) as a function of the differential dependence of \(\mathrm{G}^{\mathrm{E}}\) on \(\mathrm{m}_{\mathrm{j}}\).[1]

    \[\ln \left(\gamma_{\mathrm{j}}\right)=(1 / \mathrm{R} \, \mathrm{T}) \,\left[\mathrm{dG}^{\mathrm{E}} / \mathrm{dm}_{\mathrm{j}}\right] \nonumber \]

    If we substitute for \(\ln \left(\gamma_{j}\right)\) in the equation for \(\mathrm{G}^{\mathrm{E}}\), an equation for \(\phi\) in terms of \(\mathrm{G}^{\mathrm{E}}\) is obtained.

    \[1-\phi=(1 / \mathrm{R} \, \mathrm{T}) \,\left[\mathrm{G}^{\mathrm{E}} / \mathrm{m}_{\mathrm{j}}-\mathrm{dG}^{\mathrm{E}} / \mathrm{dm}_{\mathrm{j}}\right] \nonumber \]

    A more elegant derivation of equation (e) starts out with the equation (a) for the excess Gibbs energy written in the following form.

    \[\left[\mathrm{G}^{\mathrm{E}} / \mathrm{m}_{\mathrm{j}}\right] / \mathrm{R} \, \mathrm{T}=1-\phi+\ln \left(\gamma_{\mathrm{j}}\right) \nonumber \]

    Then at fixed \(\mathrm{T}\) and \(\mathrm{p}\),

    \[(1 / \mathrm{R} \, \mathrm{T}) \,\left\{\mathrm{d}\left[\mathrm{G}^{\mathrm{E}} / \mathrm{m}_{\mathrm{j}}\right] / \mathrm{dm}_{\mathrm{j}}\right\}=-\left(\mathrm{d} \phi / \mathrm{dm}_{\mathrm{j}}\right)+\mathrm{d} \ln \left(\gamma_{\mathrm{j}}\right) / \mathrm{dm}_{\mathrm{j}} \nonumber \]

    But according to the Gibbs-Duhem equation,

    \[-\left(\mathrm{d} \phi / d m_{\mathrm{j}}\right)+\left(\mathrm{d} \ln \left(\gamma_{\mathrm{j}}\right) / \mathrm{dm} \mathrm{m}_{\mathrm{j}}\right)=(\phi-1) / \mathrm{m}_{\mathrm{j}} \nonumber \]

    Then,

    \[1-\phi=-(1 / \mathrm{R} \, \mathrm{T}) \,\left\{\mathrm{d}\left[\mathrm{G}^{\mathrm{E}} / \mathrm{m}_{\mathrm{j}}\right] / \mathrm{dm}_{\mathrm{j}}\right\} \, \mathrm{m}_{\mathrm{j}} \nonumber \]

    Or,

    \[1-\phi=-(1 / \mathrm{R} \, \mathrm{T}) \,\left[\mathrm{dG}^{\mathrm{E}} / \mathrm{dm}_{\mathrm{j}}\right] \, \mathrm{m}_{\mathrm{j}} \nonumber \]

    The latter equation does not however require that \((1-\phi)\) is a linear function of \(\mathrm{m}_{\mathrm{j}}\). The actual form of this dependence has to be obtained by experiment.

    Footnotes

    [1] \(\ln \left(\gamma_{\mathrm{j}}\right)=\left[\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right]^{-1} \,\left[\mathrm{K}^{-1} \,\left[\mathrm{J} \mathrm{kg}^{-1}\right] \,\left[\mathrm{mol} \mathrm{kg}^{-1}\right]^{-1}=[1]\right.\)

    [2] \((1-\phi)=\left[\frac{1}{\left[\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right] \,[\mathrm{K}]}\right] \,\left[\frac{\left[\mathrm{J} \mathrm{kg}^{-1}\right]}{\left[\mathrm{mol} \mathrm{kg}^{-1}\right.}+\frac{\left[\mathrm{J} \mathrm{kg}^{-1}\right]}{\left[\mathrm{mol} \mathrm{kg}^{-1}\right]}\right]=[1]\)


    This page titled 1.10.3: Gibbs Energies- Solutions- Solvent and Solute is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.