Skip to main content
Chemistry LibreTexts

1.10.3: Gibbs Energies- Solutions- Solvent and Solute

  • Page ID
    379744
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    A given solution (at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\), where the latter is close to the standard pressure) is prepared using \(1 \mathrm{~kg}\) of water and \(\mathrm{m}_{\mathrm{j}}\) moles of a simple solute. We consider the differential dependence of the excess Gibbs energy for the solution \(\mathrm{G}^{\mathrm{E}}\) on molality \(\mathrm{m}_{\mathrm{j}}\).

    \[\mathrm{G}_{\mathrm{m}}^{\mathrm{E}}=\mathrm{R} \, \mathrm{T} \, \mathrm{m}_{\mathrm{j}} \,\left[1-\phi+\ln \left(\gamma_{\mathrm{j}}\right)\right]\]

    Hence, at fixed \(\mathrm{T}\) and \(\mathrm{p}\),

    \[\begin{aligned}
    (1 / \mathrm{R} \, \mathrm{T}) \,\left[\mathrm{dG}^{\mathrm{E}} / \mathrm{dm}_{\mathrm{j}}\right]=\left[1-\phi+\ln \left(\gamma_{\mathrm{j}}\right)\right]-\mathrm{m}_{\mathrm{j}} \,\left[\mathrm{d} \phi / \mathrm{dm}_{\mathrm{j}}\right] \\
    &+\mathrm{m}_{\mathrm{j}} \,\left[\mathrm{d} \ln \left(\gamma_{\mathrm{j}}\right) / \mathrm{dm}_{\mathrm{j}}\right]
    \end{aligned}\]

    But according to the Gibbs-Duhem equation,

    \[-\phi-\mathrm{m}_{\mathrm{j}} \,\left[\mathrm{d} \phi / \mathrm{dm}_{\mathrm{j}}\right]+1+\mathrm{m}_{\mathrm{j}} \,\left[\mathrm{d} \ln \left(\gamma_{\mathrm{j}}\right) / \mathrm{dm}_{\mathrm{j}}\right]=0\]

    Hence, we obtain an equation for \(\ln \left(\gamma_{j}\right)\) as a function of the differential dependence of \(\mathrm{G}^{\mathrm{E}}\) on \(\mathrm{m}_{\mathrm{j}}\).[1]

    \[\ln \left(\gamma_{\mathrm{j}}\right)=(1 / \mathrm{R} \, \mathrm{T}) \,\left[\mathrm{dG}^{\mathrm{E}} / \mathrm{dm}_{\mathrm{j}}\right]\]

    If we substitute for \(\ln \left(\gamma_{j}\right)\) in the equation for \(\mathrm{G}^{\mathrm{E}}\), an equation for \(\phi\) in terms of \(\mathrm{G}^{\mathrm{E}}\) is obtained.

    \[1-\phi=(1 / \mathrm{R} \, \mathrm{T}) \,\left[\mathrm{G}^{\mathrm{E}} / \mathrm{m}_{\mathrm{j}}-\mathrm{dG}^{\mathrm{E}} / \mathrm{dm}_{\mathrm{j}}\right]\]

    A more elegant derivation of equation (e) starts out with the equation (a) for the excess Gibbs energy written in the following form.

    \[\left[\mathrm{G}^{\mathrm{E}} / \mathrm{m}_{\mathrm{j}}\right] / \mathrm{R} \, \mathrm{T}=1-\phi+\ln \left(\gamma_{\mathrm{j}}\right)\]

    Then at fixed \(\mathrm{T}\) and \(\mathrm{p}\),

    \[(1 / \mathrm{R} \, \mathrm{T}) \,\left\{\mathrm{d}\left[\mathrm{G}^{\mathrm{E}} / \mathrm{m}_{\mathrm{j}}\right] / \mathrm{dm}_{\mathrm{j}}\right\}=-\left(\mathrm{d} \phi / \mathrm{dm}_{\mathrm{j}}\right)+\mathrm{d} \ln \left(\gamma_{\mathrm{j}}\right) / \mathrm{dm}_{\mathrm{j}}\]

    But according to the Gibbs-Duhem equation,

    \[-\left(\mathrm{d} \phi / d m_{\mathrm{j}}\right)+\left(\mathrm{d} \ln \left(\gamma_{\mathrm{j}}\right) / \mathrm{dm} \mathrm{m}_{\mathrm{j}}\right)=(\phi-1) / \mathrm{m}_{\mathrm{j}}\]

    Then,

    \[1-\phi=-(1 / \mathrm{R} \, \mathrm{T}) \,\left\{\mathrm{d}\left[\mathrm{G}^{\mathrm{E}} / \mathrm{m}_{\mathrm{j}}\right] / \mathrm{dm}_{\mathrm{j}}\right\} \, \mathrm{m}_{\mathrm{j}}\]

    Or,

    \[1-\phi=-(1 / \mathrm{R} \, \mathrm{T}) \,\left[\mathrm{dG}^{\mathrm{E}} / \mathrm{dm}_{\mathrm{j}}\right] \, \mathrm{m}_{\mathrm{j}}\]

    The latter equation does not however require that \((1-\phi)\) is a linear function of \(\mathrm{m}_{\mathrm{j}}\). The actual form of this dependence has to be obtained by experiment.

    Footnotes

    [1] \(\ln \left(\gamma_{\mathrm{j}}\right)=\left[\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right]^{-1} \,\left[\mathrm{K}^{-1} \,\left[\mathrm{J} \mathrm{kg}^{-1}\right] \,\left[\mathrm{mol} \mathrm{kg}^{-1}\right]^{-1}=[1]\right.\)

    [2] \((1-\phi)=\left[\frac{1}{\left[\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right] \,[\mathrm{K}]}\right] \,\left[\frac{\left[\mathrm{J} \mathrm{kg}^{-1}\right]}{\left[\mathrm{mol} \mathrm{kg}^{-1}\right.}+\frac{\left[\mathrm{J} \mathrm{kg}^{-1}\right]}{\left[\mathrm{mol} \mathrm{kg}^{-1}\right]}\right]=[1]\)


    This page titled 1.10.3: Gibbs Energies- Solutions- Solvent and Solute is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.